OFFSET
1,2
FORMULA
G.f.: A(x) = G(x) + G(x)^2 where
* G(x) = (sqrt(1 + 4*A(x)) - 1)/2;
* G(x) = Series_Reversion(x - A(x)^2).
EXAMPLE
G.f.: A(x) = x + 2*x^2 + 8*x^3 + 58*x^4 + 516*x^5 + 5264*x^6 +...
Related expansions.
x - A(x)^2 = x - x^2 - 4*x^3 - 20*x^4 - 148*x^5 - 1328*x^6 -...
Let G(x) equal the series reversion of x - A(x)^2, then
G(x) = x + x^2 + 6*x^3 + 45*x^4 + 414*x^5 + 4310*x^6 + 49068*x^7 +...
G(x)^2 = x^2 + 2*x^3 + 13*x^4 + 102*x^5 + 954*x^6 + 9988*x^7 +...
PROG
(PARI) {a(n)=local(A=x+2*x^2, B=serreverse(x*(1+x+x*O(x^n)))); for(i=1, n, A=serreverse(B-subst(A, x, B)^2)); polcoeff(A, n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 05 2011
STATUS
approved