login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A185898
G.f. satisfies: x + x^2 = A(x - A(x)^2).
1
1, 2, 8, 58, 516, 5264, 59056, 712002, 9091360, 121741316, 1697801200, 24533242088, 365899614704, 5615722652912, 88482403906752, 1428528355241602, 23595413088087220, 398214274587320432, 6859495185702804744
OFFSET
1,2
FORMULA
G.f.: A(x) = G(x) + G(x)^2 where
* G(x) = (sqrt(1 + 4*A(x)) - 1)/2;
* G(x) = Series_Reversion(x - A(x)^2).
EXAMPLE
G.f.: A(x) = x + 2*x^2 + 8*x^3 + 58*x^4 + 516*x^5 + 5264*x^6 +...
Related expansions.
x - A(x)^2 = x - x^2 - 4*x^3 - 20*x^4 - 148*x^5 - 1328*x^6 -...
Let G(x) equal the series reversion of x - A(x)^2, then
G(x) = x + x^2 + 6*x^3 + 45*x^4 + 414*x^5 + 4310*x^6 + 49068*x^7 +...
G(x)^2 = x^2 + 2*x^3 + 13*x^4 + 102*x^5 + 954*x^6 + 9988*x^7 +...
PROG
(PARI) {a(n)=local(A=x+2*x^2, B=serreverse(x*(1+x+x*O(x^n)))); for(i=1, n, A=serreverse(B-subst(A, x, B)^2)); polcoeff(A, n)}
CROSSREFS
Sequence in context: A007347 A027257 A308352 * A063074 A319590 A005804
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 05 2011
STATUS
approved