Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Aug 19 2019 16:50:34
%S 0,2,8,58,492,5074,60888,835482,12895796,221169970,4172486496,
%T 85872215290,1914575169756,45970251182418,1182618181384424,
%U 32451961380002458,946163712877067460,29208900504551394610,951798961321369842864,32647628386008050898810
%N Number of k-ary quasitrivial semigroups that have no neutral element on an n-element set.
%C Number of k-ary associative and quasitrivial operations that have no neutral element on an n-element set.
%H Michael De Vlieger, <a href="/A308352/b308352.txt">Table of n, a(n) for n = 1..413</a>
%H M. Couceiro, J. Devillet <a href="https://arxiv.org/abs/1904.05968">All quasitrivial n-ary semigroups are reducible to semigroups</a>, arXiv:1904.05968 [math.RA], 2019.
%H Jimmy Devillet, Miguel Couceiro, <a href="http://orbilu.uni.lu/handle/10993/39720">Characterizations and enumerations of classes of quasitrivial n-ary semigroups</a>, 98th Workshop on General Algebra (AAA98, Dresden, Germany 2019).
%F a(n) = A292932(n) - n*A292932(n-1) = A292932(n) - A292933(n) for n >= 1.
%F a(n) ~ n! * (4-r) / ((r-1) * (r-3)^(n+1)), where r = -LambertW(-1, -2*exp(-3)). - _Vaclav Kotesovec_, Jun 05 2019
%F E.g.f.: (1 - x)/(x + 3 - 2*exp(x)). - _Andrew Howroyd_, Aug 19 2019
%t nmax = 20; Rest[CoefficientList[Series[(1 - x)/(3 - 2*E^x + x), {x, 0, nmax}], x] * Range[0, nmax]!] (* _Vaclav Kotesovec_, Jun 05 2019 *)
%o (PARI) seq(n)={Vec(-1+serlaplace((1-x)/(x+3-2*exp(x))) + O(x*x^n), -n)} \\ _Andrew Howroyd_, Aug 19 2019
%Y Cf. A292932, A292933.
%K nonn,easy
%O 1,2
%A _J. Devillet_, May 21 2019