login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A308025 a(n) = n*(2*n - 3 - (-1)^n)*(5*n - 2 + (-1)^n)/16. 1
0, 0, 9, 19, 55, 87, 168, 234, 378, 490, 715, 885, 1209, 1449, 1890, 2212, 2788, 3204, 3933, 4455, 5355, 5995, 7084, 7854, 9150, 10062, 11583, 12649, 14413, 15645, 17670, 19080, 21384, 22984, 25585, 27387, 30303, 32319, 35568, 37810, 41410, 43890, 47859 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

Consider the rectangular prisms with dimensions s X t X t, where n = s + t and s < t. Then a(n) is the sum of the areas of the squares that rest on a given space diagonal in each of the rectangular prisms.

Sum of the squares of the smaller parts and twice the sum of the squares of the larger parts in the partitions of n into two distinct parts.

LINKS

Colin Barker, Table of n, a(n) for n = 1..1000

Index entries for sequences related to partitions

Index entries for linear recurrences with constant coefficients, signature (1,3,-3,-3,3,1,-1).

FORMULA

a(n) = Sum_{i=1..floor((n-1)/2)} i^2 + 2*(n-i)^2.

a(n) = a(n-1) + 3*a(n-2) - 3*a(n-3) - 3*a(n-4) + 3*a(n-5) + a(n-6) - a(n-7).

G.f.: x^3*(9 + 10*x + 9*x^2 + 2*x^3) / ((1 - x)^4*(1 + x)^3). - Colin Barker, May 17 2019

MATHEMATICA

Table[n*(2 n - 3 - (-1)^n)*(5 n - 2 + (-1)^n)/16, {n, 60}]

PROG

(PARI) concat([0, 0], Vec(x^3*(9 + 10*x + 9*x^2 + 2*x^3) / ((1 - x)^4*(1 + x)^3) + O(x^40))) \\ Colin Barker, May 17 2019

CROSSREFS

Cf. A294286.

Sequence in context: A048696 A046103 A146459 * A041158 A146080 A334640

Adjacent sequences:  A308022 A308023 A308024 * A308026 A308027 A308028

KEYWORD

nonn,easy

AUTHOR

Wesley Ivan Hurt, May 09 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 28 03:49 EDT 2021. Contains 346316 sequences. (Running on oeis4.)