The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A307841 Minimum number of nontrivial Latin subrectangles in a diagonal Latin square of order n. 1
 0, 0, 0, 12, 0, 51, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS A Latin subrectangle is an m X k Latin rectangle of a Latin square of order n, 1 <= m <= n, 1 <= k <= n. A nontrivial Latin subrectangle is an m X k Latin rectangle of a Latin square of order n, 1 < m < n, 1 < k < n. LINKS E. I. Vatutin, Discussion about properties of diagonal Latin squares at forum.boinc.ru (in Russian) EXAMPLE For example, the square 0 1 2 3 4 5 6 4 2 6 5 0 1 3 3 6 1 0 5 2 4 6 3 5 4 1 0 2 1 5 3 2 6 4 0 5 0 4 6 2 3 1 2 4 0 1 3 6 5 has a nontrivial Latin subrectangle . . . . . . . . . 6 5 0 1 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 1 3 6 5 The total number of Latin subrectangles for this square is 2119 and the number of nontrivial Latin subrectangles is only 151. CROSSREFS Cf. A307839, A307842. Sequence in context: A333577 A278711 A331911 * A257949 A077351 A119530 Adjacent sequences:  A307838 A307839 A307840 * A307842 A307843 A307844 KEYWORD nonn,more AUTHOR Eduard I. Vatutin, May 01 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 4 01:57 EDT 2020. Contains 336201 sequences. (Running on oeis4.)