1,4

An Latin subrectangle is a m X k Latin rectangle of a Latin square of order n, 1 <= m <= n, 1 <= k <= n.

Table of n, a(n) for n=1..7.

E. I. Vatutin, Discussion about properties of diagonal Latin squares at forum.boinc.ru (in Russian)

Index entries for sequences related to Latin squares and rectangles

For example, the square

0 1 2 3 4 5 6

4 2 6 5 0 1 3

3 6 1 0 5 2 4

6 3 5 4 1 0 2

1 5 3 2 6 4 0

5 0 4 6 2 3 1

2 4 0 1 3 6 5

has a Latin subrectangle

. . . . . . .

. . 6 5 0 1 3

. . 0 1 3 6 5

The total number of Latin subrectangles for this square is 2119.

Cf. A307839.

Sequence in context: A142497 A142523 A307839 * A142211 A142447 A142620

Adjacent sequences: A307837 A307838 A307839 * A307841 A307842 A307843

nonn,more

Eduard I. Vatutin, May 01 2019

approved