login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A307749
Lengths of the hypotenuse of primitive pythagorean triples if prime, whose shorter legs sum to the hypotenuse of prime length of another primitive pythagorean triple whose shorter legs sum to a prime number.
0
13, 53, 97, 137, 233, 313, 421, 461, 641, 821, 877, 929, 997, 1061, 1093, 1129, 1201, 1217, 1229, 1693, 1709, 1873, 2213, 2309, 3001, 3049, 3169, 3181, 3469, 3517, 3581, 3593, 3677, 3701, 3733, 3881, 3917, 4057, 4397, 4409, 4621, 4813, 5237, 5437, 5441, 5953, 6257, 6301, 6577, 6637, 6661, 6857, 7229, 7481, 7669
OFFSET
1,1
COMMENTS
Embedded in this sequence are subsets based on the definition, for example {97,137}, and {3049,3881,5441,7481}. These arise when terms are both the length of the hypotenuse of one primitive Pythagorean triple and the sum of the two shorter legs of another.
EXAMPLE
13 is a term because 13^2 = 12^2 + 5^2 and 12 + 5 = 17 and 17^2 = 15^2 + 8^3 and 15 + 8 = 23.
PROG
(PARI) is(n) = {if((n%4 != 1) || !isprime(n), return(0)); my(v=thue(T, n^2), q); for(i=1, #v, if(v[i][1]>0 && v[i][2]>=v[i][1] && (q=vecsum(v[i])) && isprime(q), return(q)); ); 0; }
isok(p) = isprime(p) && (q=is(p)) && is(q);
lista(nn) = T=thueinit('x^2+1, 1); forprime(p=2, nn, if (isok(p), print1(p, ", "))); \\ Michel Marcus, May 01 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Torlach Rush, Apr 26 2019
STATUS
approved