login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Lengths of the hypotenuse of primitive pythagorean triples if prime, whose shorter legs sum to the hypotenuse of prime length of another primitive pythagorean triple whose shorter legs sum to a prime number.
0

%I #30 May 01 2019 09:14:01

%S 13,53,97,137,233,313,421,461,641,821,877,929,997,1061,1093,1129,1201,

%T 1217,1229,1693,1709,1873,2213,2309,3001,3049,3169,3181,3469,3517,

%U 3581,3593,3677,3701,3733,3881,3917,4057,4397,4409,4621,4813,5237,5437,5441,5953,6257,6301,6577,6637,6661,6857,7229,7481,7669

%N Lengths of the hypotenuse of primitive pythagorean triples if prime, whose shorter legs sum to the hypotenuse of prime length of another primitive pythagorean triple whose shorter legs sum to a prime number.

%C Embedded in this sequence are subsets based on the definition, for example {97,137}, and {3049,3881,5441,7481}. These arise when terms are both the length of the hypotenuse of one primitive Pythagorean triple and the sum of the two shorter legs of another.

%e 13 is a term because 13^2 = 12^2 + 5^2 and 12 + 5 = 17 and 17^2 = 15^2 + 8^3 and 15 + 8 = 23.

%o (PARI) is(n) = {if((n%4 != 1) || !isprime(n), return(0)); my(v=thue(T, n^2), q); for(i=1, #v, if(v[i][1]>0 && v[i][2]>=v[i][1] && (q=vecsum(v[i])) && isprime(q), return(q)); ); 0;}

%o isok(p) = isprime(p) && (q=is(p)) && is(q);

%o lista(nn) = T=thueinit('x^2+1, 1); forprime(p=2, nn, if (isok(p), print1(p, ", "))); \\ _Michel Marcus_, May 01 2019

%Y Cf. A002144, A283391, A307718.

%K nonn

%O 1,1

%A _Torlach Rush_, Apr 26 2019