login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A306880
Expansion of e.g.f. (sec(x) + tan(x))/(1 + LambertW(-x)).
2
1, 2, 7, 44, 401, 4796, 70783, 1240448, 25146113, 578583952, 14892958551, 423979878816, 13225810908881, 448604790288448, 16437893908228367, 647074747622534912, 27233273311687115649, 1220273444664347994368, 57998633082360310382119, 2914426113026062106334720, 154378135436424206699590545
OFFSET
0,2
COMMENTS
Boustrophedon transform of A000312.
FORMULA
a(n) ~ (1 + sin(exp(-1)))/cos(exp(-1)) * n^n. - Vaclav Kotesovec, Aug 17 2019
MATHEMATICA
nmax = 20; CoefficientList[Series[(Sec[x] + Tan[x])/(1 + LambertW[-x]), {x, 0, nmax}], x] Range[0, nmax]!
t[n_, 0] := If[n < 1, 1, n^n]; t[n_, k_] := t[n, k] = t[n, k - 1] + t[n - 1, n - k]; a[n_] := t[n, n]; Array[a, 21, 0]
PROG
(Python)
from itertools import accumulate, count, islice
def A306880_gen(): # generator of terms
blist = tuple()
for i in count(0):
yield (blist := tuple(accumulate(reversed(blist), initial=i**i)))[-1]
A306880_list = list(islice(A306880_gen(), 30)) # Chai Wah Wu, Jun 11 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Apr 16 2019
STATUS
approved