login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A306458
a(n) = A001694(n)/A007947(A001694(n)), the powerful numbers divided by their squarefree kernel.
4
1, 2, 4, 3, 8, 5, 9, 16, 6, 7, 32, 12, 27, 10, 18, 11, 25, 64, 24, 13, 14, 20, 36, 15, 81, 128, 48, 17, 54, 49, 19, 28, 40, 72, 21, 22, 50, 256, 23, 96, 125, 108, 45, 26, 243, 56, 80, 29, 144, 30, 31, 44, 162, 100, 512, 33, 75, 192, 34, 35, 216, 63, 121, 52
OFFSET
1,2
COMMENTS
A permutation of the positive integers.
LINKS
FORMULA
A064549(a(n)) = A001694(n).
MAPLE
N:= 10^4: # to get terms corresponding to powerful numbers <= N
rad:= n -> convert(numtheory:-factorset(n), `*`):
S:= {1}:
p:= 1:
do
p:= nextprime(p);
if p^2 > N then break fi;
S:= S union map(t -> seq(t*p^i, i=2..floor(log[p](N/t))), select(`<=`, S, N/p^2));
od:
map(t -> t/rad(t), sort(convert(S, list))); # Robert Israel, Mar 20 2019
MATHEMATICA
p=Join[{1}, Select[ Range@ 12500, Min@ FactorInteger[#][[All, 2]] > 1 &]]; rad[n_] := Times @@ (First@# & /@ FactorInteger@ n); p/(rad/@p) (* after Harvey P. Dale at A001694 and Robert G. Wilson v at A007947 *)
PROG
(PARI) apply(x->(x/factorback(factorint(x)[, 1])), select(x->ispowerful(x), vector(1600, k, k))) \\ Michel Marcus, Feb 17 2019
(Python)
from math import isqrt, prod
from sympy import mobius, integer_nthroot, primefactors
def A306458(n):
def squarefreepi(n): return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1)))
def bisection(f, kmin=0, kmax=1):
while f(kmax) > kmax: kmax <<= 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
def f(x):
c, l = n+x-squarefreepi(integer_nthroot(x, 3)[0]), 0
j = isqrt(x)
while j>1:
k2 = integer_nthroot(x//j**2, 3)[0]+1
w = squarefreepi(k2-1)
c -= j*(w-l)
l, j = w, isqrt(x//k2**3)
return c+l
return (m:=bisection(f, n, n))//prod(primefactors(m)) # Chai Wah Wu, Sep 14 2024
CROSSREFS
KEYWORD
nonn,look
AUTHOR
Amiram Eldar, Feb 17 2019
STATUS
approved