The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A306399 a(1)=1; a(n) = number of occurrences of a(n-1) if a(n-1) is odd; a(n) = number of occurrences of a(n-2) if a(n-1) is even. 1
 1, 1, 2, 2, 2, 3, 1, 3, 2, 2, 5, 1, 4, 4, 2, 2, 7, 1, 5, 2, 2, 9, 1, 6, 6, 2, 2, 11, 1, 7, 2, 2, 13, 1, 8, 8, 2, 2, 15, 1, 9, 2, 2, 17, 1, 10, 10, 2, 2, 19, 1, 11, 2, 2, 21, 1, 12, 12, 2, 2, 23, 1, 13, 2, 2, 25, 1, 14, 14, 2, 2, 27, 1, 15, 2, 2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 LINKS Colin Barker, Table of n, a(n) for n = 1..1000 Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,-1). FORMULA From Colin Barker, Aug 24 2019: (Start) G.f.: x*(1 + x + 2*x^2 + 2*x^3 + 2*x^4 + 3*x^5 + x^6 + 3*x^7 + 2*x^8 + 2*x^9 + 5*x^10 - x^11 + 2*x^12 - 2*x^14 - 2*x^15 + x^16 - x^17 - x^18 - 2*x^19 - 2*x^20 - x^21 - x^23) / ((1 - x)^2*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + x^10)^2). a(n) = 2*a(n-11) - a(n-22) for n>24. (End) EXAMPLE Since a(6) is odd, a(7) = number of occurrences of a(6). Number of occurrences of a(6)=3 up to that point is 1. a(14) is even, so a(15) = number of occurrences of a(13). Number of occurrences of a(13)=4 up to that point is 2. MATHEMATICA CoefficientList[Series[(1 + x + 2*x^2 + 2*x^3 + 2*x^4 + 3*x^5 + x^6 + 3*x^7 + 2*x^8 + 2*x^9 + 5*x^10 - x^11 + 2*x^12 - 2*x^14 - 2*x^15 + x^16 - x^17 - x^18 - 2*x^19 - 2*x^20 - x^21 - x^23)/((1 - x)^2*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + x^10)^2), {x, 0, 100}], x] (* Wesley Ivan Hurt, Aug 24 2019 *) PROG (VBA/Excel) Sub 306399()    Cells(1, 1)=1    For n = 2 To 200       k = 2 - (Cells(n - 1, 1) Mod 2)       m = Cells(n - k, 1)       S = 0       For j = 1 To n - 1          If Cells(j, 1) = m Then             S = S + 1          End If       Next j       Cells(n, 1) = S    Next n End Sub (Python) n, aa = 1, [1] print(n, 1) while n <= 75:     sa = aa[len(aa)-2+aa[len(aa)-1]%2]     i, a = 0, 0     while i < len(aa):         if sa == aa[i]:             a = a+1         i = i+1     print(n, a)     n, aa = n+1, aa+[a] # A.H.M. Smeets, Aug 23 2019 (PARI) nbo(v, i) = #select(x->(x == v[i]), v); lista(nn) = {v = vector(nn); v[1] = 1; for (k=2, nn, if (v[k-1] % 2, v[k] = nbo(v, k-1), v[k] = nbo(v, k-2)); ); v; } \\ Michel Marcus, Aug 24 2019 (PARI) Vec(x*(1 + x + 2*x^2 + 2*x^3 + 2*x^4 + 3*x^5 + x^6 + 3*x^7 + 2*x^8 + 2*x^9 + 5*x^10 - x^11 + 2*x^12 - 2*x^14 - 2*x^15 + x^16 - x^17 - x^18 - 2*x^19 - 2*x^20 - x^21 - x^23) / ((1 - x)^2*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + x^10)^2) + O(x^80)) \\ Colin Barker, Aug 25 2019 (PARI) A306399_upto(N, c=Map([0; 1]~), L, P)=vector(N, i, [P, L]=[L, mapget(c, if(bitand(L, 1), L, P))]; mapput(~c, L, iferr(mapget(c, L)+1, E, 1)); L) \\ M. F. Hasler, Sep 02 2019 CROSSREFS Sequence in context: A227738 A103960 A242626 * A240689 A233567 A141059 Adjacent sequences:  A306396 A306397 A306398 * A306400 A306401 A306402 KEYWORD nonn,easy AUTHOR Ali Sada, Aug 22 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 5 23:38 EST 2021. Contains 349558 sequences. (Running on oeis4.)