login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A306317
Prime numbers generated by the formula a(n) = round(2^(d^n)), where d is the real constant 1.30076870414817691055252567828266106688423996320151467218595488...
1
2, 3, 5, 7, 13, 29, 79, 293, 1619, 14947, 269237, 11570443, 1540936027, 893681319109, 3513374197622981, 166491395148719076277, 201072926144898161374940903, 16390008340104365722976984827792343, 320076519482444467256811692239892862140322229, 7781106039755041703318535124896118983796534882794414187099
OFFSET
1,1
COMMENTS
The exponent d = 1.3007687... is the smallest found.
LINKS
Simon Plouffe, A set of formulas for primes, arXiv:1901.01849 [math.NT], 2019.
Simon Plouffe, Une formule pour les nombres premiers, viXra:1902.0036.
FORMULA
a(n) = round(2^(d^n)), where d is a real constant starting 1.30076870414817691055252567828266106688423996320151467218595488...
MAPLE
# Computes the values according to the formula, v = 2..., e = 1.30076870414817691055252567828266106688423996320151467218595488..., m the # number of terms. Returns the real and the rounded values (primes). In this case 23 terms will be generated
val := proc(s, e, m)
local ll, v, n, kk;
v := s;
ll := [];
for n to m do
v := v^e; ll := [op(ll), v]
end do;
return [ll, map(round, ll)]
end;
CROSSREFS
KEYWORD
nonn
AUTHOR
Simon Plouffe, Feb 06 2019
STATUS
approved