login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Prime numbers generated by the formula a(n) = round(2^(d^n)), where d is the real constant 1.30076870414817691055252567828266106688423996320151467218595488...
1

%I #30 Mar 16 2019 12:25:02

%S 2,3,5,7,13,29,79,293,1619,14947,269237,11570443,1540936027,

%T 893681319109,3513374197622981,166491395148719076277,

%U 201072926144898161374940903,16390008340104365722976984827792343,320076519482444467256811692239892862140322229,7781106039755041703318535124896118983796534882794414187099

%N Prime numbers generated by the formula a(n) = round(2^(d^n)), where d is the real constant 1.30076870414817691055252567828266106688423996320151467218595488...

%C The exponent d = 1.3007687... is the smallest found.

%H Simon Plouffe, <a href="/A306317/b306317.txt">Table of n, a(n) for n = 1..24</a>

%H Simon Plouffe, <a href="https://arxiv.org/abs/1901.01849">A set of formulas for primes</a>, arXiv:1901.01849 [math.NT], 2019.

%H Simon Plouffe, <a href="http://vixra.org/abs/1902.0036">Une formule pour les nombres premiers</a>, viXra:1902.0036.

%F a(n) = round(2^(d^n)), where d is a real constant starting 1.30076870414817691055252567828266106688423996320151467218595488...

%p # Computes the values according to the formula, v = 2..., e = 1.30076870414817691055252567828266106688423996320151467218595488..., m the # number of terms. Returns the real and the rounded values (primes). In this case 23 terms will be generated

%p val := proc(s, e, m)

%p local ll, v, n, kk;

%p v := s;

%p ll := [];

%p for n to m do

%p v := v^e; ll := [op(ll), v]

%p end do;

%p return [ll, map(round, ll)]

%p end;

%Y Cf. A323176, A323065, A323611.

%K nonn

%O 1,1

%A _Simon Plouffe_, Feb 06 2019