OFFSET
1,18
COMMENTS
A rooted tree is a semi-identity tree if the non-leaf branches of the root are all distinct and are themselves semi-identity trees. It is balanced if all leaves are the same distance from the root.
LINKS
Alois P. Heinz, Rows n = 1..200, flattened
EXAMPLE
Triangle begins:
1
0 1
0 1 1
0 1 1 1
0 1 1 1 1
0 1 2 1 1 1
0 1 2 2 1 1 1
0 1 3 3 2 1 1 1
0 1 3 4 3 2 1 1 1
0 1 5 6 5 3 2 1 1 1
0 1 5 9 7 5 3 2 1 1 1
0 1 7 12 12 8 5 3 2 1 1 1
0 1 8 17 17 13 8 5 3 2 1 1 1
0 1 10 25 26 20 14 8 5 3 2 1 1 1
0 1 12 34 39 31 21 14 8 5 3 2 1 1 1
The postpositive terms of row 9 {3, 4, 3, 2} count the following trees:
((ooooooo)) (((oooooo))) ((((ooooo)))) (((((oooo)))))
((o)(ooooo)) (((o)(oooo))) ((((o)(ooo)))) (((((o)(oo)))))
((oo)(oooo)) (((oo)(ooo))) ((((o))((oo))))
(((o))((ooo)))
MATHEMATICA
ubk[n_, k_]:=Select[Join@@Table[Select[Union[Sort/@Tuples[ubk[#, k-1]&/@ptn]], UnsameQ@@DeleteCases[#, {}]&], {ptn, IntegerPartitions[n-1]}], SameQ[k, ##]&@@Length/@Position[#, {}]&];
Table[Length[ubk[n, k]], {n, 1, 10}, {k, 0, n-1}]
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Gus Wiseman, Feb 01 2019
STATUS
approved