login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A306243
Decimal expansion of Sum_{n>=2} log(n)/n!.
3
6, 0, 3, 7, 8, 2, 8, 6, 2, 7, 9, 1, 4, 8, 7, 9, 8, 8, 4, 1, 6, 1, 8, 3, 8, 1, 0, 9, 8, 2, 4, 5, 0, 5, 4, 8, 3, 0, 4, 1, 7, 0, 1, 5, 3, 1, 6, 4, 9, 9, 1, 0, 2, 1, 7, 7, 2, 4, 1, 3, 2, 1, 1, 3, 8, 2, 2, 7, 2, 2, 8, 4, 1, 0, 0, 5, 2, 5, 5, 6, 9, 4, 7, 8, 2, 1, 3, 7, 5, 0, 2, 4, 6, 4, 9, 7, 1, 0, 8, 8
OFFSET
0,1
LINKS
István Mező, Problem 11806, Problems and Solutions, The American Mathematical Monthly, Vol. 121, No. 10 (2014), p. 947; Parseval and Kummer, Solution to Problem 11806 by Omran Kouba, ibid., Vol. 123, No. 9 (2016), pp. 943-944.
FORMULA
Equal to log(exp(1/2*log(2*exp(1/3*log(3*exp(1/4*log(4*exp(...)))))))).
Equals log(A296301). - Vaclav Kotesovec, Jun 22 2023
Equals Integral_{x=0..2*Pi} log(Gamma(x/(2*Pi))) * exp(cos(x)) * sin(x + sin(x)) dx - (e-1)*(log(2*Pi)+gamma), where gamma is Euler's constant (A001620) (Mező, 2014). - Amiram Eldar, Jan 25 2024
Equals Integral_{x=0..1} (exp(x) - 1)/(x*log(x)) - (exp(1) - 1)/log(x) dx. - Velin Yanev, Nov 29 2024
EXAMPLE
0.6037828627914879884...
MATHEMATICA
NSum[Log[n]/n!, {n, 2, Infinity}, WorkingPrecision -> 110,
NSumTerms -> 100] // RealDigits[#, 10, 100] &
PROG
(PARI) suminf(n=2, log(n)/n!) \\ Michel Marcus, Jan 31 2019
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Rok Cestnik, Jan 31 2019
STATUS
approved