login
A173685
Decimal expansion of negative of previously unknown transition arising in exact dynamics for fully connected nonlinear network.
0
6, 0, 3, 9, 9, 0, 4, 2, 4, 8, 6, 5, 0, 7, 4, 7, 4, 3, 9, 5, 2, 9, 1, 8, 7, 1, 9, 9, 7, 8, 4, 0, 7, 9, 4, 0, 0, 2, 8, 3, 5, 9, 4, 3, 6, 8, 0, 8, 1, 1, 5, 1, 1, 3, 0, 0, 2, 6, 4, 3, 2, 1, 1, 1, 3, 4, 3, 4, 8, 7, 7, 0, 4, 6, 7, 3, 0, 5, 4, 0, 4, 9, 9, 9, 0, 4, 1, 5, 5, 1, 5, 3, 0, 5, 3, 0, 3, 8, 4, 9, 4, 0, 1, 5, 0, 2, 9, 4, 8, 0, 6, 9, 2, 2, 6, 5, 3, 5, 7, 8, 8, 6, 4, 9, 5, 0, 0, 8, 3, 1, 7, 2, 0, 4, 5, 6, 9, 6, 5, 7, 8, 5, 0, 1, 2, 8, 3, 5, 1, 9
OFFSET
1,1
COMMENTS
Given on p.3 of Tsironis. The paper has a major typo. Substituting N=3 into equation 16 produces the polynomial 108 - 43x +2x^2 + 2x^3, whose real zero is about -6.0399. The exact value is given in the formula below.
LINKS
FORMULA
-(1 + f^(1/3)/2^(2/3) + 131/(2f)^(1/3))/3, where f=3307-387*sqrt(43).
EXAMPLE
Chi_c ~ -6.03990424865074743952918719978407940028359436808....
MATHEMATICA
RealDigits[Solve[108 - 43 x + 2 x^2 + 2 x^3 == 0, x][[1, 1, 2]], 10, 150][[1]]
r = (3307 - 387*Sqrt@ 43); RealDigits[-(1 + (r/4)^(1/3) + 131/(2r)^(1/3))/3, 10, 111][[1]] (* Robert G. Wilson v, Jan 31 2011 *)
CROSSREFS
Sequence in context: A289487 A217708 A306243 * A019108 A019115 A229637
KEYWORD
nonn,cons
AUTHOR
Jonathan Vos Post, Jan 27 2011
STATUS
approved