login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A306011
Let S(m) = d(k)/d(1) + ... + d(1)/d(k), where d(1)..d(k) are the unitary divisors of m; then a(n) is the numerator of S(m) when all the numbers S(m) are arranged in increasing order.
4
1, 5, 10, 17, 26, 50, 65, 25, 82, 122, 13, 170, 85, 257, 290, 52, 125, 362, 221, 205, 530, 500, 626, 730, 325, 305, 842, 425, 962, 1025, 425, 1220, 1370, 260, 697, 1682, 169, 725, 1850, 130, 1700, 2210, 1037, 2132, 905, 2402, 2810, 1285, 1445, 2900, 1325
OFFSET
1,2
EXAMPLE
The first 8 pairs {m,S(m)} are {1, 1}, {2, 5/2}, {3, 10/3}, {4, 17/4}, {5, 26/5}, {6, 25/3}, {7, 50/7}, {8, 65/8}. When the numbers S(m) are arranged in increasing order, the pairs are {1, 1}, {2, 5/2}, {3, 10/3}, {4, 17/4}, {5, 26/5}, {7, 50/7}, {8, 65/8}, {6, 25/3}, so that the first 8 numerators are 1,5,10,17,26,50,65,25.
MATHEMATICA
z = 100; r[n_] := Select[Divisors[n], GCD[#, n/#] == 1 &];
k[n_] := Length[r[n]];
t[n_] := Table[r[n][[k[n] + 1 - i]]/r[n][[k[1] + i - 1]], {i, 1, k[n]}];
s = Table[{n, Total[t[n]]}, {n, 1, z}]
v = SortBy[s, Last]
v1 = Table[v[[n]][[1]], {n, 1, z}] (* A306010 *)
w = Table[v[[n]][[2]], {n, 1, z}];
Numerator[w] (* A306011 *)
Denominator[w] (* A306012 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jun 16 2018
STATUS
approved