login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A306010
Let S(m) = d(k)/d(1) + ... + d(1)/d(k), where d(1)..d(k) are the unitary divisors of m; then a(n) is the number m when the sums S(m) are arranged in increasing order.
4
1, 2, 3, 4, 5, 7, 8, 6, 9, 11, 10, 13, 12, 16, 17, 15, 14, 19, 20, 18, 23, 21, 25, 27, 24, 22, 29, 28, 31, 32, 26, 33, 37, 35, 36, 41, 40, 34, 43, 30, 39, 47, 44, 45, 38, 49, 53, 48, 52, 51, 46, 55, 56, 59, 42, 61, 50, 57, 64, 63, 67, 54, 65, 71, 68, 58, 73
OFFSET
1,2
COMMENTS
This is a permutation of the positive integers.
EXAMPLE
The first 8 pairs {m,S(m)} are {1, 1}, {2, 5/2}, {3, 10/3}, {4, 17/4}, {5, 26/5}, {6, 25/3}, {7, 50/7}, {8, 65/8}. When the numbers S(m) are arranged in increasing order, the pairs are {1, 1}, {2, 5/2}, {3, 10/3}, {4, 17/4}, {5, 26/5}, {7, 50/7}, {8, 65/8}, {6, 25/3}, so that the first 8 terms of (a(n)) are 1,2,3,4,5,7,8,6.
MATHEMATICA
z = 100; r[n_] := Select[Divisors[n], GCD[#, n/#] == 1 &];
k[n_] := Length[r[n]];
t[n_] := Table[r[n][[k[n] + 1 - i]]/r[n][[k[1] + i - 1]], {i, 1, k[n]}];
s = Table[{n, Total[t[n]]}, {n, 1, z}]
v = SortBy[s, Last]
v1 = Table[v[[n]][[1]], {n, 1, z}] (* A306010 *)
w = Table[v[[n]][[2]], {n, 1, z}];
Numerator[w] (* A306011 *)
Denominator[w] (* A306012 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jun 16 2018
STATUS
approved