login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A305898
Filter sequence combining prime signature of n (A046523) and similar signature (A284011) obtained when Stern polynomial B(n,x) is factored over Z.
2
1, 2, 2, 3, 2, 4, 2, 5, 3, 4, 2, 6, 2, 4, 4, 7, 2, 6, 2, 6, 4, 4, 2, 8, 9, 4, 5, 6, 2, 10, 2, 11, 4, 4, 4, 12, 2, 4, 4, 8, 2, 10, 2, 6, 6, 4, 2, 13, 3, 14, 4, 6, 2, 8, 15, 8, 4, 4, 2, 16, 2, 4, 17, 18, 15, 10, 2, 6, 4, 10, 2, 19, 2, 4, 6, 6, 15, 10, 2, 13, 20, 4, 2, 16, 4, 4, 4, 8, 2, 16, 15, 6, 4, 4, 15, 21, 2, 6, 6, 22, 2, 10, 2, 8, 10
OFFSET
1,2
COMMENTS
Restricted growth sequence transform of ordered pair [A046523(n), A284011(n)].
For all i, j: a(i) = a(j) => A305892(i) = A305892(j).
LINKS
PROG
(PARI)
up_to = 65537;
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
pfps(n) = { my(f=factor(n)); sum(i=1, #f~, f[i, 2] * 'x^(primepi(f[i, 1])-1)); };
A284010(n) = { if(!bitand(n, (n-1)), 0, my(p=0, f=vecsort(factor(pfps(n))[, 2], , 4)); prod(i=1, #f, (p=nextprime(p+1))^f[i])); }
A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961
A260443(n) = if(n<2, n+1, if(n%2, A260443(n\2)*A260443(n\2+1), A003961(A260443(n\2))));
A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ From A046523
Aux305898(n) = [A046523(n), A284011(n)];
v305898 = rgs_transform(vector(up_to, n, Aux305898(n)));
A305898(n) = v305898[n];
CROSSREFS
Cf. also A305790.
Sequence in context: A369760 A305899 A101296 * A181819 A302046 A077462
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jul 01 2018
STATUS
approved