Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #6 Jul 01 2018 08:35:46
%S 1,2,2,3,2,4,2,5,3,4,2,6,2,4,4,7,2,6,2,6,4,4,2,8,9,4,5,6,2,10,2,11,4,
%T 4,4,12,2,4,4,8,2,10,2,6,6,4,2,13,3,14,4,6,2,8,15,8,4,4,2,16,2,4,17,
%U 18,15,10,2,6,4,10,2,19,2,4,6,6,15,10,2,13,20,4,2,16,4,4,4,8,2,16,15,6,4,4,15,21,2,6,6,22,2,10,2,8,10
%N Filter sequence combining prime signature of n (A046523) and similar signature (A284011) obtained when Stern polynomial B(n,x) is factored over Z.
%C Restricted growth sequence transform of ordered pair [A046523(n), A284011(n)].
%C For all i, j: a(i) = a(j) => A305892(i) = A305892(j).
%H Antti Karttunen, <a href="/A305898/b305898.txt">Table of n, a(n) for n = 1..65537</a>
%o (PARI)
%o up_to = 65537;
%o rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
%o pfps(n) = { my(f=factor(n)); sum(i=1, #f~, f[i, 2] * 'x^(primepi(f[i, 1])-1)); };
%o A284010(n) = { if(!bitand(n, (n-1)), 0, my(p=0, f=vecsort(factor(pfps(n))[, 2], ,4)); prod(i=1, #f, (p=nextprime(p+1))^f[i])); }
%o A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961
%o A260443(n) = if(n<2, n+1, if(n%2, A260443(n\2)*A260443(n\2+1), A003961(A260443(n\2))));
%o A284011(n) = A284010(A260443(n));
%o A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ From A046523
%o Aux305898(n) = [A046523(n), A284011(n)];
%o v305898 = rgs_transform(vector(up_to, n, Aux305898(n)));
%o A305898(n) = v305898[n];
%Y Cf. A046523, A284011, A305892, A305899.
%Y Cf. also A305790.
%K nonn
%O 1,2
%A _Antti Karttunen_, Jul 01 2018