login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A304810 Solution (b(n)) of the complementary equation a(n) = b(2n) + b(4n) ; see Comments. 3
1, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 35, 36, 37, 39, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 66, 67, 68, 69, 70, 71, 72, 74, 75, 76, 77, 78 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Define complementary sequences a(n) and b(n) recursively:

b(n) = least new,

a(n) = b(2n) + b(4n),

where "least new" means the least positive integer not yet placed.  Empirically, {a(n) - 7*n: n >= 0} = {2,3} and {6*b(n) - 7*n: n >= 0} = {5,6,7,8,9,10,11}..  See A304799 for a guide to related sequences.

LINKS

Clark Kimberling, Table of n, a(n) for n = 0..9999

EXAMPLE

b(0) = 1, so that a(0) = 2.  Since a(1) = b(2) + b(4), we must have a(1) >= 8, so that b(1) = 3, b(2) = 4, b(3) = 5, b(4) = 6, b(5) = 7, and a(1) = 10.

MATHEMATICA

mex[list_, start_] := (NestWhile[# + 1 &, start, MemberQ[list, #] &]);

h = 2; k = 4; a = {}; b = {1};

AppendTo[a, mex[Flatten[{a, b}], 1]];

Do[Do[AppendTo[b, mex[Flatten[{a, b}], Last[b]]], {k}];

  AppendTo[a, Last[b] + b[[1 + (Length[b] - 1)/k h]]], {500}];

Take[a, 200]  (* A304809 *)

Take[b, 200]  (* A304810 *)

(* Peter J. C. Moses, May 14 2008 *)

CROSSREFS

Cf. A304799, A304809.

Sequence in context: A047565 A026466 A304806 * A026469 A258187 A039237

Adjacent sequences:  A304807 A304808 A304809 * A304811 A304812 A304813

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, May 30 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 12 07:28 EDT 2021. Contains 343821 sequences. (Running on oeis4.)