login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A047565
Numbers that are congruent to {0, 1, 3, 4, 5, 6, 7} mod 8.
1
0, 1, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 35, 36, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 72, 73, 75, 76, 77
OFFSET
1,3
FORMULA
From Chai Wah Wu, May 30 2016: (Start)
G.f.: x^2*(x^6 + x^5 + x^4 + x^3 + x^2 + 2*x + 1)/(x^8 - x^7 - x + 1).
a(n) = a(n-1) + a(n-7) - a(n-8) for n>8. (End)
From Wesley Ivan Hurt, Jul 21 2016: (Start)
a(n) = a(n-7) + 8 for n>7.
a(n) = (56*n - 42 + (n mod 7) + ((n+1) mod 7) + ((n+2) mod 7) + ((n+3) mod 7) - 6*((n+4) mod 7) + ((n+5) mod 7) + ((n+6) mod 7))/49.
a(7*k) = 8*k-1, a(7*k-1) = 8*k-2, a(7*k-2) = 8*k-3, a(7*k-3) = 8*k-4, a(7*k-4) = 8*k-5, a(7*k-5) = 8*k-7, a(7*k-6) = 8*k-8. (End)
MAPLE
A047565:=n->8*floor(n/7)+[0, 1, 3, 4, 5, 6, 7][(n mod 7)+1]: seq(A047565(n), n=0..100); # Wesley Ivan Hurt, Jul 21 2016
MATHEMATICA
LinearRecurrence[{1, 0, 0, 0, 0, 0, 1, -1}, {0, 1, 3, 4, 5, 6, 7, 8} , 50] (* G. C. Greubel, May 30 2016 *)
Select[Range[0, 200], MemberQ[{0, 1, 3, 4, 5, 6, 7}, Mod[#, 8] &]] (* Vincenzo Librandi, May 30 2016 *)
PROG
(Magma) [n: n in [0..150] | n mod 8 in [0, 1, 3, 4, 5, 6, 7]]; // Vincenzo Librandi, May 30 2016
CROSSREFS
Sequence in context: A137937 A260580 A297468 * A026466 A304806 A304810
KEYWORD
nonn,easy
STATUS
approved