login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A304475
Number of nX4 0..1 arrays with every element unequal to 0, 1, 2, 4 or 6 king-move adjacent elements, with upper left element zero.
1
8, 24, 37, 110, 297, 869, 2325, 6379, 17568, 48401, 132571, 364655, 1002589, 2754738, 7567524, 20801769, 57166345, 157087321, 431686614, 1186366477, 3260212654, 8959296665, 24621148350, 67661598847, 185940093307, 510981495243
OFFSET
1,1
COMMENTS
Column 4 of A304479.
LINKS
FORMULA
Empirical: a(n) = a(n-1) +3*a(n-2) +7*a(n-3) +7*a(n-4) -14*a(n-5) -28*a(n-6) -56*a(n-7) -65*a(n-8) -77*a(n-9) +31*a(n-10) +280*a(n-11) +458*a(n-12) +484*a(n-13) +398*a(n-14) +320*a(n-15) -333*a(n-16) -1155*a(n-17) -1849*a(n-18) -2523*a(n-19) -2612*a(n-20) -1778*a(n-21) +445*a(n-22) +2555*a(n-23) +4684*a(n-24) +7438*a(n-25) +7323*a(n-26) +4721*a(n-27) +1048*a(n-28) -1452*a(n-29) -6069*a(n-30) -11167*a(n-31) -10559*a(n-32) -6445*a(n-33) -3475*a(n-34) -2108*a(n-35) +2357*a(n-36) +8323*a(n-37) +7696*a(n-38) +5753*a(n-39) +4296*a(n-40) +3014*a(n-41) +73*a(n-42) -2650*a(n-43) -2475*a(n-44) -2110*a(n-45) -2531*a(n-46) -2247*a(n-47) -526*a(n-48) +835*a(n-49) +429*a(n-50) -103*a(n-51) +197*a(n-52) +558*a(n-53) +517*a(n-54) +283*a(n-55) +4*a(n-56) -156*a(n-57) -91*a(n-58) +29*a(n-59) +68*a(n-60) -72*a(n-61) -100*a(n-62) -32*a(n-63) +32*a(n-64) +24*a(n-65) for n>67
EXAMPLE
Some solutions for n=5
..0..1..0..0. .0..0..1..1. .0..0..1..1. .0..1..0..0. .0..0..0..0
..1..0..0..0. .1..1..1..1. .1..1..1..1. .0..1..0..0. .1..1..0..0
..0..0..0..0. .0..0..1..1. .1..1..1..0. .0..0..1..1. .1..1..1..1
..0..0..0..1. .0..0..0..0. .0..1..1..0. .0..0..0..0. .1..1..0..0
..0..0..1..0. .0..0..1..1. .0..1..1..1. .0..0..1..1. .0..0..0..0
CROSSREFS
Cf. A304479.
Sequence in context: A305241 A044450 A134223 * A316300 A050427 A329549
KEYWORD
nonn
AUTHOR
R. H. Hardin, May 13 2018
STATUS
approved