login
A304450
Numbers that are not perfect powers and whose prime factors span an initial interval of prime numbers.
2
2, 6, 12, 18, 24, 30, 48, 54, 60, 72, 90, 96, 108, 120, 150, 162, 180, 192, 210, 240, 270, 288, 300, 360, 384, 420, 432, 450, 480, 486, 540, 600, 630, 648, 720, 750, 768, 810, 840, 864, 960, 972, 1050, 1080, 1152, 1200, 1260, 1350, 1440, 1458, 1470, 1500, 1536
OFFSET
1,1
COMMENTS
The multiset of prime indices of a(n) is the a(n)-th row of A112798. This multiset is normal, meaning it spans an initial interval of positive integers, and aperiodic, meaning its multiplicities are relatively prime.
LINKS
FORMULA
Intersection of A007916 and A055932.
EXAMPLE
Sequence of all normal aperiodic multisets begins
2: {1}
6: {1,2}
12: {1,1,2}
18: {1,2,2}
24: {1,1,1,2}
30: {1,2,3}
48: {1,1,1,1,2}
54: {1,2,2,2}
60: {1,1,2,3}
72: {1,1,1,2,2}
90: {1,2,2,3}
96: {1,1,1,1,1,2}
108: {1,1,2,2,2}
120: {1,1,1,2,3}
150: {1,2,3,3}
162: {1,2,2,2,2}
180: {1,1,2,2,3}
192: {1,1,1,1,1,1,2}
210: {1,2,3,4}
240: {1,1,1,1,2,3}
270: {1,2,2,2,3}
288: {1,1,1,1,1,2,2}
300: {1,1,2,3,3}
360: {1,1,1,2,2,3}
384: {1,1,1,1,1,1,1,2}
MATHEMATICA
Select[Range[1000], FactorInteger[#][[-1, 1]]==Prime[Length[FactorInteger[#]]]&&GCD@@FactorInteger[#][[All, 2]]===1&]
PROG
(PARI) ok(n)={my(f=factor(n)[, 1]); #f && !ispower(n) && #f==primepi(f[#f])} \\ Andrew Howroyd, Aug 26 2018
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 12 2018
STATUS
approved