The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A304312 Logarithmic derivative of F(x) that satisfies: [x^n] exp( n^2 * x ) / F(x) = 0 for n>0. 8
 1, 9, 148, 3493, 106431, 3950832, 172325014, 8617033285, 485267003023, 30363691715629, 2088698040637242, 156612539215405732, 12709745319947141220, 1109746209390479579732, 103724343230007402591558, 10332348604630683943445797, 1092720669631704348689818959, 122274820828415241343176467043, 14433472319311799728710020346232 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Is this sequence essentially the same as A006691? Conjecture: a(n) is the number of connected n-state finite automata with 2 inputs (A006691). [I believe the name of A006691 should be changed to read "(n+1)-state". See my comments in A006691. - Petros Hadjicostas, Feb 26 2021] Equals row 2 of table A304321. LINKS Paul D. Hanna, Table of n, a(n) for n = 0..400 FORMULA Logarithmic derivative of the o.g.f. of A304322. For n>=1, a(n) = B_{n+1}((n+1)^2-0!*a(0),-1!*a(1),...,-(n-1)!*a(n-1),0) / n!, where B_{n+1}(...) is the (n+1)-st complete exponential Bell polynomial. - Max Alekseyev, Jun 18 2018 a(n) ~ sqrt(1-c) * 2^(2*n + 3/2) * n^(n + 3/2) / (sqrt(Pi) * c^(n+1) * (2-c)^(n+1) * exp(n)), where c = -A226775 = -LambertW(-2*exp(-2)). - Vaclav Kotesovec, Aug 31 2020 EXAMPLE O.g.f.: L(x) = 1 + 9*x + 148*x^2 + 3493*x^3 + 106431*x^4 + 3950832*x^5 + 172325014*x^6 + 8617033285*x^7 + 485267003023*x^8 + 30363691715629*x^9 + ... such that L(x) = F'(x)/F(x) where F(x) is the o.g.f. of A304322 : F(x) = 1 + x + 5*x^2 + 54*x^3 + 935*x^4 + 22417*x^5 + 685592*x^6 + 25431764*x^7 + 1106630687*x^8 + 55174867339*x^9 + 3097872254493*x^10 + ... + A304322(n)*x^n + ... which satisfies [x^n] exp( n^2 * x ) / F(x) = 0 for n>0. MATHEMATICA m = 25; F = 1 + Sum[c[k] x^k, {k, m}]; s[n_] := Solve[SeriesCoefficient[Exp[n^2 * x]/F, {x, 0, n}] == 0][[1]]; Do[F = F /. s[n], {n, m}]; CoefficientList[D[F, x]/F + O[x]^m, x] (* Jean-François Alcover, May 20 2018 *) PROG (PARI) {a(n) = my(A=[1], L); for(i=0, n, A=concat(A, 0); m=#A; A[m] = Vec( exp(x*(m-1)^2 +x^2*O(x^m)) / Ser(A) )[m] ); L = Vec(Ser(A)'/Ser(A)); L[n+1]} for(n=0, 25, print1( a(n), ", ")) CROSSREFS Cf. A304322, A006691, A304321, A304313, A304314, A304315. Sequence in context: A222439 A211106 A006691 * A050580 A266128 A183439 Adjacent sequences:  A304309 A304310 A304311 * A304313 A304314 A304315 KEYWORD nonn AUTHOR Paul D. Hanna, May 11 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 1 11:38 EST 2021. Contains 349429 sequences. (Running on oeis4.)