login
A304310
T(n,k)=Number of nXk 0..1 arrays with every element unequal to 0, 1, 2, 3 or 5 king-move adjacent elements, with upper left element zero.
8
1, 2, 2, 4, 8, 4, 8, 23, 23, 8, 16, 65, 77, 65, 16, 32, 192, 261, 261, 192, 32, 64, 569, 918, 1137, 918, 569, 64, 128, 1709, 3270, 4979, 4979, 3270, 1709, 128, 256, 5162, 11739, 22089, 26548, 22089, 11739, 5162, 256, 512, 15663, 42286, 98560, 145369, 145369
OFFSET
1,2
COMMENTS
Table starts
...1.....2......4.......8.......16........32.........64.........128
...2.....8.....23......65......192.......569.......1709........5162
...4....23.....77.....261......918......3270......11739.......42286
...8....65....261....1137.....4979.....22089......98560......441950
..16...192....918....4979....26548....145369.....795436.....4370971
..32...569...3270...22089...145369....989406....6692008....45578982
..64..1709..11739...98560...795436...6692008...55773947...469033247
.128..5162..42286..441950..4370971..45578982..469033247..4882896349
.256.15663.152593.1985853.24051887.310837633.3946132559.50824097741
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 3*a(n-1) +3*a(n-2) -6*a(n-3) -8*a(n-4) for n>5
k=3: [order 16]
k=4: [order 57] for n>59
EXAMPLE
Some solutions for n=5 k=4
..0..1..1..0. .0..1..0..1. .0..0..0..0. .0..0..0..0. .0..0..0..1
..1..1..1..1. .0..0..0..0. .0..1..0..1. .0..0..0..0. .1..1..1..0
..1..1..0..0. .0..0..0..0. .1..1..1..1. .0..1..1..1. .0..1..0..0
..1..1..0..0. .0..0..0..1. .1..1..1..0. .0..1..1..1. .0..0..0..0
..0..0..0..1. .1..0..1..1. .1..1..1..1. .0..1..1..1. .0..0..1..0
CROSSREFS
Column 1 is A000079(n-1).
Sequence in context: A316289 A306053 A317230 * A316209 A305776 A317125
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, May 10 2018
STATUS
approved