login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A303644 a(n) is the number of lattice points in a Cartesian grid between a square of side length 2*n, centered at the origin, and its inscribed circle. The sides of the square are parallel to the coordinate axes. 4
0, 0, 0, 4, 4, 12, 24, 32, 40, 48, 68, 92, 100, 120, 136, 168, 192, 220, 244, 268, 312, 336, 376, 420, 444, 484, 524, 576, 624, 664, 724, 764, 820, 868, 912, 992, 1040, 1116, 1156, 1220, 1304, 1368, 1440, 1496, 1564, 1660, 1732, 1816, 1888, 1960, 2032, 2116, 2220, 2308 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,4
COMMENTS
The borders of the square and the circle are not included. Rotating the square by 45 degrees (so that its vertices lie on the coordinate axes) results in sequence A303646 instead.
LINKS
Kirill Ustyantsev, illustrated example
FORMULA
a(n) = A016754(n-1) - A000328(n) - 4.
EXAMPLE
For n = 4, we have 4 points with integer coordinates; the point in the first quadrant is at (3,3):
.
o . . + . . o
. . . + . . .
. . . + . . .
-+-+-+-+-+-+-+-
. . . + . . .
. . . + . . .
o . . + . . o
.
Similarly, for n = 5, we have 4 points with integer coordinates; the point in the first quadrant is at (4,4):
.
o . . . + . . . o
. . . . + . . . .
. . . . + . . . .
. . . . + . . . .
-+-+-+-+-+-+-+-+-+-
. . . . + . . . .
. . . . + . . . .
. . . . + . . . .
o . . . + . . . o
.
For n = 6, we have 12 points, of which the 3 points in the first quadrant are at (4,5), (5,4), and (5,5):
.
o o . . . + . . . o o
o . . . . + . . . . o
. . . . . + . . . . .
. . . . . + . . . . .
. . . . . + . . . . .
-+-+-+-+-+-+-+-+-+-+-+-
. . . . . + . . . . .
. . . . . + . . . . .
. . . . . + . . . . .
o . . . . + . . . . o
o o . . . + . . . o o
PROG
(Python)
import math
for n in range(1, 100):
count = 0
for x in range(1, n):
for y in range(1, n):
if x * x + y * y > n * n and x < n and y < n:
count = count + 1
print(4 * count, end=", ")
(PARI) a(n) = sum(x=-n+1, n-1, sum(y=-n+1, n-1, (x^2+y^2) > n^2)); \\ Michel Marcus, May 22 2018
CROSSREFS
Sequence in context: A120033 A097073 A019085 * A298796 A106232 A359709
KEYWORD
nonn
AUTHOR
Kirill Ustyantsev, Apr 27 2018
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 8 21:25 EDT 2024. Contains 375759 sequences. (Running on oeis4.)