The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A303647 a(n) = ceiling(a(n-1)/(2^(1/3)-1)+1), a(1)=1. 2
 1, 5, 21, 82, 317, 1221, 4699, 18080, 69561, 267625, 1029641, 3961362, 15240637, 58635641, 225590199, 867918160, 3339160721, 12846826845, 49425880861, 190157283842, 731596320957, 2814686695261, 10829006332499, 41662675404240, 160289731905481, 616686228261665 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS FORMULA a(n) = A301483(n+2) - A195350(n+2) + A195339(n-2) (conjectured). Conjectures from Colin Barker, Apr 28 2018: (Start) G.f.: x*(1 + x + x^2) / ((1 - x)*(1 - 3*x - 3*x^2 - x^3)). a(n) = 4*a(n-1) - 2*a(n-3) - a(n-4) for n>4. (End) MAPLE a := proc(n) option remember;        if n<1 then 0 else        if n=1 then 1 else ceil(a(n-1)/(2^(1/3)-1)+1)      end if end if end proc; seq(a(n), n=0..10); MATHEMATICA Nest[Append[#, Ceiling[#[[-1]]/(2^(1/3) - 1) + 1]] &, {1}, 25] (* or *) Rest@ CoefficientList[Series[x (1 + x + x^2)/((1 - x) (1 - 3 x - 3 x^2 - x^3)), {x, 0, 25}], x] (* Michael De Vlieger, Apr 28 2018 *) PROG (PARI) a(n) = if (n==1, 1, ceil(a(n-1)/(2^(1/3)-1)+1)); \\ Michel Marcus, Apr 28 2018 CROSSREFS Cf. A195350, A301483, A195339. Sequence in context: A051196 A273454 A094834 * A147504 A217783 A221862 Adjacent sequences:  A303644 A303645 A303646 * A303648 A303649 A303650 KEYWORD nonn AUTHOR Gregory Gerard Wojnar, Apr 27 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 16 11:28 EDT 2022. Contains 356168 sequences. (Running on oeis4.)