login
A303476
Square array T(n, k) read by antidiagonals, n > 0 and k > 0: T(n, k) is the number of distinct shuffles of the words corresponding to the binary representations of n and of k.
1
1, 2, 2, 1, 2, 1, 3, 3, 3, 3, 2, 3, 1, 3, 2, 2, 4, 6, 6, 4, 2, 1, 3, 3, 3, 3, 3, 1, 4, 4, 3, 7, 7, 3, 4, 4, 3, 4, 1, 6, 4, 6, 1, 4, 3, 3, 6, 10, 10, 6, 6, 10, 10, 6, 3, 2, 4, 6, 4, 4, 3, 4, 4, 6, 4, 2, 3, 6, 6, 9, 11, 4, 4, 11, 9, 6, 6, 3, 2, 4, 3, 7, 8, 10, 1
OFFSET
1,2
COMMENTS
A shuffle of two words is formed by interspersing their characters into a new word, keeping the characters of each word in order. Leading zeros are ignored.
FORMULA
T(n, k) = T(k, n).
T(n, n) = A193020(n).
Apparently T(n, 1) = A008687(n + 1).
T(2^i, 2^j) = 1 + max(i, j) for any i >=0 and j >= 0.
T(n, k) = 1 iff n = 2^i - 1 and k = 2^j - 1 for some i > 0 and j > 0.
T(2^i, 2^j - 1) = binomial(i + j, j) for any i >= 0 and j > 0.
EXAMPLE
Array T(n, k) begins:
n\k| 1 2 3 4 5 6 7 8 9 10 11 12
---+------------------------------------------------
1| 1 2 1 3 2 2 1 4 3 3 2 3
2| 2 2 3 3 4 3 4 4 6 4 6 4
3| 1 3 1 6 3 3 1 10 6 6 3 6
4| 3 3 6 3 7 6 10 4 9 7 13 6
5| 2 4 3 7 4 6 4 11 8 8 6 10
6| 2 3 3 6 6 3 4 10 12 7 9 6
7| 1 4 1 10 4 4 1 20 10 10 4 10
8| 4 4 10 4 11 10 20 4 13 11 24 10
9| 3 6 6 9 8 12 10 13 9 15 14 18
10| 3 4 6 7 8 7 10 11 15 8 14 11
PROG
(C++) See Links section.
CROSSREFS
Sequence in context: A343190 A256132 A340057 * A187201 A262403 A343491
KEYWORD
nonn,base,tabl
AUTHOR
Rémy Sigrist, Apr 24 2018
STATUS
approved