login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A302942
a(n) = (2^n-1)^2*(2^n + 2).
1
0, 4, 54, 490, 4050, 32674, 261954, 2096770, 16776450, 134216194, 1073738754, 8589928450, 68719464450, 549755789314, 4398046461954, 35184371990530, 281474976514050, 2251799813292034, 18014398508695554, 144115188074283010, 1152921504603701250, 9223372036848484354
OFFSET
0,2
COMMENTS
a(n) is also the number of total dominating sets in the complete tripartite graph K_{n,n,n} for n > 0.
LINKS
Eric Weisstein's World of Mathematics, Complete Tripartite Graph
Eric Weisstein's World of Mathematics, Total Dominating Set
FORMULA
a(n) = A291703(n) for n > 1.
a(n) = 11*a(n-1) - 26*a(n-2) + 16*a(n-3).
G.f.: -2*x*(2 + 5*x)/(-1 + 11*x - 26*x^2 + 16*x^3).
MATHEMATICA
Table[(2^n - 1)^2 (2^n + 2), {n, 0, 30}]
LinearRecurrence[{11, -26, 16}, {4, 54, 490}, {0, 20}]
CoefficientList[Series[-((2 x (2 + 5 x))/(-1 + 11 x - 26 x^2 + 16 x^3)), {x, 0, 20}], x]
CROSSREFS
Cf. A291703.
Sequence in context: A001545 A208954 A269507 * A292305 A073863 A269480
KEYWORD
nonn
AUTHOR
Eric W. Weisstein, Apr 16 2018
STATUS
approved