login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (2^n-1)^2*(2^n + 2).
1

%I #4 Apr 16 2018 18:45:18

%S 0,4,54,490,4050,32674,261954,2096770,16776450,134216194,1073738754,

%T 8589928450,68719464450,549755789314,4398046461954,35184371990530,

%U 281474976514050,2251799813292034,18014398508695554,144115188074283010,1152921504603701250,9223372036848484354

%N a(n) = (2^n-1)^2*(2^n + 2).

%C a(n) is also the number of total dominating sets in the complete tripartite graph K_{n,n,n} for n > 0.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/CompleteTripartiteGraph.html">Complete Tripartite Graph</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/TotalDominatingSet.html">Total Dominating Set</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (11,-26,16).

%F a(n) = A291703(n) for n > 1.

%F a(n) = 11*a(n-1) - 26*a(n-2) + 16*a(n-3).

%F G.f.: -2*x*(2 + 5*x)/(-1 + 11*x - 26*x^2 + 16*x^3).

%t Table[(2^n - 1)^2 (2^n + 2), {n, 0, 30}]

%t LinearRecurrence[{11, -26, 16}, {4, 54, 490}, {0, 20}]

%t CoefficientList[Series[-((2 x (2 + 5 x))/(-1 + 11 x - 26 x^2 + 16 x^3)), {x, 0, 20}], x]

%Y Cf. A291703.

%K nonn

%O 0,2

%A _Eric W. Weisstein_, Apr 16 2018