login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A302452
a(n) = coefficient of x^(2*n-1) in the n-th iteration (n-fold self-composition) of e.g.f. sinh(x).
0
1, 2, 33, 2160, 368145, 130426016, 83303826249, 87104014381056, 139088689115885505, 321859857651846029824, 1036109938469605247521009, 4490275483028481600517832704, 25503692273369769781221175069521, 185636732310716855091866841134243840, 1699077450890747555020338066545506541145
OFFSET
1,2
COMMENTS
a(n) = coefficient of x^(2*n-1) in the n-th iteration (n-fold self-composition) of e.g.f. sin(x) (absolute values).
LINKS
EXAMPLE
The initial coefficients of successive iterations of e.g.f. A(x) = sinh(x) (odd powers only) are as follows:
n = 1: (1), 1, 1, 1, 1, ... e.g.f. A(x)
n = 2: 1, (2), 12, 128, 1872, ... e.g.f. A(A(x))
n = 3: 1, 3, (33), 731, 25857, ... e.g.f. A(A(A(x)))
n = 4: 1, 4, 64, (2160) 121600, ... e.g.f. A(A(A(A(x))))
n = 5: 1, 5, 105, 4765, (368145), ... e.g.f. A(A(A(A(A(x)))))
...
More explicitly, the successive iterations of e.g.f. A(x) = sinh(x) begin:
sinh(x) = x/1! + x^3/3! + x^5/5! + x^7/7! + x^9/9! + ...
sinh(sinh(x)) = x/1! + 2*x^3/3! + 12*x^5/5! + 128*x^7/7! + 1872*x^9/9! + ...
sinh(sinh(sinh(x))) = x/1! + 3*x^3/3! + 33*x^5/5! + 731*x^7/7! + 25857*x^9/9! + ...
sinh(sinh(sinh(sinh(x)))) = x/1! + 4*x^3/3! + 64*x^5/5! + 2160*x^7/7! + 121600*x^9/9! + ...
sinh(sinh(sinh(sinh(sinh(x))))) = x/1! + 5*x^3/3! + 105*x^5/5! + 4765*x^7/7! + 368145*x^9/9! + ...
MATHEMATICA
Table[(2 n - 1)! SeriesCoefficient[Nest[Function[x, Sinh[x]], x, n], {x, 0, 2 n - 1}], {n, 15}]
CROSSREFS
Sequence in context: A206385 A263052 A090335 * A113105 A132567 A269632
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Apr 08 2018
STATUS
approved