|
|
A302098
|
|
Number of prime factors (with multiplicity) of generalized Fermat number 14^(2^n) + 1.
|
|
1
|
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
a(8) >= 5. - Chai Wah Wu, Dec 09 2019
|
|
LINKS
|
Table of n, a(n) for n=0..7.
factordb.com query on 14^256+1.
|
|
FORMULA
|
a(n) = A001222(A152587(n)).
|
|
EXAMPLE
|
b(n) = 14^(2^n) + 1
Complete factorizations:
b(0) = 3*5
b(1) = 197
b(2) = 41*937
b(3) = 17*5393*16097
b(4) = 193*11284732320255809
b(5) = 7489*1204905857*1667461121*315256811699009
b(6) = 8633886977*P64
b(7) = 257*100497382788383295179961898289105815085380571534081*P95
|
|
PROG
|
(PARI) a(n) = bigomega(14^(2^n)+1)
|
|
CROSSREFS
|
Cf. A275377, A275378, A275379, A275380, A275381, A275382, A275383, A302097, A152587.
Sequence in context: A337879 A147301 A108380 * A112779 A029201 A071283
Adjacent sequences: A302095 A302096 A302097 * A302099 A302100 A302101
|
|
KEYWORD
|
nonn,hard,more
|
|
AUTHOR
|
Jeppe Stig Nielsen, Apr 01 2018
|
|
STATUS
|
approved
|
|
|
|