login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A275379
Number of prime factors (with multiplicity) of generalized Fermat number 6^(2^n) + 1.
3
1, 1, 1, 2, 3, 3, 3, 7, 3, 5
OFFSET
0,4
FORMULA
a(n) = A001222(A078303(n)). - Felix Fröhlich, Jul 25 2016
EXAMPLE
b(n) = 6^(2^n) + 1.
Complete Factorizations
b(0) = 7
b(1) = 37
b(2) = 1297
b(3) = 17*98801
b(4) = 353*1697*4709377
b(5) = 2753*145601*19854979505843329
b(6) = 4926056449*447183309836853377*28753787197056661026689
b(7) = 257*763649*50307329*3191106049*2339340566463317436161*
2983028405608735541756929*18247770097021321924017185281
b(8) = 18433*
69615986569139423375849495295909549956813828853888948633601*P137
b(9) = 80897*3360769*12581314681802812884728041373153281*
3513902440204553274892072241244613302018049*P311
MATHEMATICA
Table[PrimeOmega[6^(2^n) + 1], {n, 0, 6}] (* Michael De Vlieger, Jul 26 2016 *)
PROG
(PARI) a(n) = bigomega(factor(6^(2^n)+1))
CROSSREFS
Sequence in context: A170895 A141479 A055081 * A109833 A132005 A222292
KEYWORD
nonn,hard,more
AUTHOR
EXTENSIONS
a(8) was found in 2001 by Robert Silverman
a(9) was found in 2007 by Nestor de Araújo Melo
STATUS
approved