login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of prime factors (with multiplicity) of generalized Fermat number 6^(2^n) + 1.
3

%I #18 Jul 27 2016 10:21:07

%S 1,1,1,2,3,3,3,7,3,5

%N Number of prime factors (with multiplicity) of generalized Fermat number 6^(2^n) + 1.

%F a(n) = A001222(A078303(n)). - _Felix Fröhlich_, Jul 25 2016

%e b(n) = 6^(2^n) + 1.

%e Complete Factorizations

%e b(0) = 7

%e b(1) = 37

%e b(2) = 1297

%e b(3) = 17*98801

%e b(4) = 353*1697*4709377

%e b(5) = 2753*145601*19854979505843329

%e b(6) = 4926056449*447183309836853377*28753787197056661026689

%e b(7) = 257*763649*50307329*3191106049*2339340566463317436161*

%e 2983028405608735541756929*18247770097021321924017185281

%e b(8) = 18433*

%e 69615986569139423375849495295909549956813828853888948633601*P137

%e b(9) = 80897*3360769*12581314681802812884728041373153281*

%e 3513902440204553274892072241244613302018049*P311

%t Table[PrimeOmega[6^(2^n) + 1], {n, 0, 6}] (* _Michael De Vlieger_, Jul 26 2016 *)

%o (PARI) a(n) = bigomega(factor(6^(2^n)+1))

%Y Cf. A078303, A273947.

%K nonn,hard,more

%O 0,4

%A _Arkadiusz Wesolowski_, Jul 25 2016

%E a(8) was found in 2001 by Robert Silverman

%E a(9) was found in 2007 by Nestor de Araújo Melo