login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A301992
a(n) = 8*(n-2)*(2*n-5)*a(n-1) + ((n-2)/9)*Product_{k=0..n-2} (2*k-3)^2 with a(1) = 0.
1
0, 0, 1, 50, 6027, 1350948, 486396405, 256822659990, 186967652864895, 179489092842045000, 219694686618136235625, 333935935534086791456250, 617113613582364168765061875, 1362586861058382580086938587500, 3542725840051847141662287901708125
OFFSET
1,4
LINKS
Travis Sherman, Summation of Glaisher- and Apery-like Series, University of Arizona, May 23 2000, p. 10, (3.43) - (3.47).
FORMULA
a(n) = (f2(n-1)/8)*Product_{k=0..n-2} (2*k-1)^2 where f2(n) corresponds to the y values such that Sum_{k>=0} 1/(binomial(2*k,k)*(2*k+(2*n-1))) = x*Pi*sqrt(3) - y. (See examples for connection with a(n) in terms of material at Links section).
EXAMPLE
Examples ((3.43) - (3.47)) at page 10 in Links section as follows, respectively.
For n=1, f2(1) = 0, so a(2) = 0.
For n=2, f2(2) = 8, so a(3) = 1.
For n=3, f2(3) = 400/9, so a(4) = 50.
For n=4, f2(4) = 16072/75, so a(5) = 6027.
For n=5, f2(5) = 3602528/3675, so a(6) = 1350948.
MATHEMATICA
RecurrenceTable[{b[n + 1] == 8*(n - 1)*(2*n - 3)*b[n] + (n - 1)/9 * Product[(2*k - 3)^2, {k, 0, n - 1}], b[1] == 0}, b, {n, 1, 20}] (* Vaclav Kotesovec, Mar 30 2018 *)
nmax = 15; Flatten[{0, Table[CoefficientList[Expand[FunctionExpand[Table[ FullSimplify[-Sum[1/(Binomial[2*j, j]*(2*j + (2*m - 1))), {j, 0, Infinity}]]*Product[(2*k - 1)^2, {k, 0, m - 1}]/8, {m, 0, nmax}]]], Pi][[n, 1]], {n, 2, nmax}]}] (* Vaclav Kotesovec, Apr 12 2018 *)
PROG
(PARI) a=vector(20); a[1]=0; for(n=2, #a, a[n]=8*(n-2)*(2*n-5)*a[n-1] + (n-2)*prod(k=0, n-2, (2*k-3)^2)/9); a \\ Altug Alkan, Mar 30 2018
CROSSREFS
Sequence in context: A320099 A115436 A184555 * A229753 A276102 A152258
KEYWORD
nonn
AUTHOR
Detlef Meya, Mar 30 2018
EXTENSIONS
More terms from Vaclav Kotesovec, Mar 30 2018
STATUS
approved