The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A301992 a(n) = 8*(n-2)*(2*n-5)*a(n-1) + ((n-2)/9)*Product_{k=0..n-2} (2*k-3)^2 with a(1) = 0. 1

%I

%S 0,0,1,50,6027,1350948,486396405,256822659990,186967652864895,

%T 179489092842045000,219694686618136235625,333935935534086791456250,

%U 617113613582364168765061875,1362586861058382580086938587500,3542725840051847141662287901708125

%N a(n) = 8*(n-2)*(2*n-5)*a(n-1) + ((n-2)/9)*Product_{k=0..n-2} (2*k-3)^2 with a(1) = 0.

%H Travis Sherman, <a href="http://math.arizona.edu/~rta/001/sherman.travis/series.pdf">Summation of Glaisher- and Apery-like Series</a>, University of Arizona, May 23 2000, p. 10, (3.43) - (3.47).

%F a(n) = (f2(n-1)/8)*Product_{k=0..n-2} (2*k-1)^2 where f2(n) corresponds to the y values such that Sum_{k>=0} 1/(binomial(2*k,k)*(2*k+(2*n-1))) = x*Pi*sqrt(3) - y. (See examples for connection with a(n) in terms of material at Links section).

%e Examples ((3.43) - (3.47)) at page 10 in Links section as follows, respectively.

%e For n=1, f2(1) = 0, so a(2) = 0.

%e For n=2, f2(2) = 8, so a(3) = 1.

%e For n=3, f2(3) = 400/9, so a(4) = 50.

%e For n=4, f2(4) = 16072/75, so a(5) = 6027.

%e For n=5, f2(5) = 3602528/3675, so a(6) = 1350948.

%t RecurrenceTable[{b[n + 1] == 8*(n - 1)*(2*n - 3)*b[n] + (n - 1)/9 * Product[(2*k - 3)^2, {k, 0, n - 1}], b[1] == 0}, b, {n, 1, 20}] (* _Vaclav Kotesovec_, Mar 30 2018 *)

%t nmax = 15; Flatten[{0, Table[CoefficientList[Expand[FunctionExpand[Table[ FullSimplify[-Sum[1/(Binomial[2*j, j]*(2*j + (2*m - 1))), {j, 0, Infinity}]]*Product[(2*k - 1)^2, {k, 0, m - 1}]/8, {m, 0, nmax}]]], Pi][[n, 1]], {n, 2, nmax}]}] (* _Vaclav Kotesovec_, Apr 12 2018 *)

%o (PARI) a=vector(20); a[1]=0; for(n=2, #a, a[n]=8*(n-2)*(2*n-5)*a[n-1] + (n-2)*prod(k=0, n-2, (2*k-3)^2)/9); a \\ _Altug Alkan_, Mar 30 2018

%Y Cf. A000984, A301990.

%K nonn

%O 1,4

%A _Detlef Meya_, Mar 30 2018

%E More terms from _Vaclav Kotesovec_, Mar 30 2018

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 25 20:53 EST 2020. Contains 338627 sequences. (Running on oeis4.)