login
A301813
Decimal expansion of Integral_{-infinity..infinity} -log((z^2+1/4)^(1/4))* sech(Pi*z)^2 dz.
1
1, 8, 3, 7, 3, 3, 4, 5, 2, 5, 9, 8, 3, 0, 7, 9, 8, 0, 7, 5, 9, 2, 8, 4, 4, 6, 8, 1, 4, 3, 7, 5, 6, 1, 8, 2, 8, 2, 7, 2, 5, 8, 5, 6, 1, 1, 2, 1, 2, 8, 2, 4, 2, 4, 7, 2, 2, 1, 7, 4, 4, 1, 6, 7, 4, 9, 1, 2, 5
OFFSET
0,2
FORMULA
Equals EulerGamma / Pi.
Equals Integral_{0..infinity} -log(sqrt(z^2 + 1/4))/cosh(Pi*z)^2 dz.
EXAMPLE
0.183733452598307980759284468143756182827258561121282424722174416749125638699...
MAPLE
evalf(gamma/Pi, 20);
g := -int(log(z^2+1/4)*sech(Pi*z)^2/4, z=-10..10); evalf(g, 20);
# This is an approximation. For more valid decimal digits the
# range of integration and the precision must be increased.
MATHEMATICA
RealDigits[EulerGamma/Pi, 10, 40] [[1]]
PROG
(PARI) Euler/Pi \\ Altug Alkan, Apr 18 2018
(Magma) R:= RealField(100); EulerGamma(R)/Pi(R); // G. C. Greubel, Sep 05 2018
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Peter Luschny, Apr 18 2018
STATUS
approved