login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A301813 Decimal expansion of Integral_{-infinity..infinity} -log((z^2+1/4)^(1/4))* sech(Pi*z)^2 dz. 1
1, 8, 3, 7, 3, 3, 4, 5, 2, 5, 9, 8, 3, 0, 7, 9, 8, 0, 7, 5, 9, 2, 8, 4, 4, 6, 8, 1, 4, 3, 7, 5, 6, 1, 8, 2, 8, 2, 7, 2, 5, 8, 5, 6, 1, 1, 2, 1, 2, 8, 2, 4, 2, 4, 7, 2, 2, 1, 7, 4, 4, 1, 6, 7, 4, 9, 1, 2, 5 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..10000

Peter Luschny, Illustration of the integral

FORMULA

Equals EulerGamma / Pi.

Equals Integral_{0..infinity} -log(sqrt(z^2 + 1/4))/cosh(Pi*z)^2 dz.

EXAMPLE

0.183733452598307980759284468143756182827258561121282424722174416749125638699...

MAPLE

evalf(gamma/Pi, 20);

g := -int(log(z^2+1/4)*sech(Pi*z)^2/4, z=-10..10); evalf(g, 20);

# This is an approximation. For more valid decimal digits the

# range of integration and the precision must be increased.

MATHEMATICA

RealDigits[EulerGamma/Pi, 10, 40] [[1]]

PROG

(PARI) Euler/Pi \\ Altug Alkan, Apr 18 2018

(MAGMA) R:= RealField(100); EulerGamma(R)/Pi(R); // G. C. Greubel, Sep 05 2018

CROSSREFS

Cf. A000796, A001620, A301816.

Sequence in context: A307106 A277775 A199719 * A206161 A131654 A241243

Adjacent sequences:  A301810 A301811 A301812 * A301814 A301815 A301816

KEYWORD

nonn,cons

AUTHOR

Peter Luschny, Apr 18 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 18 00:56 EDT 2019. Contains 326059 sequences. (Running on oeis4.)