login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A301814 Decimal expansion of Re((1/4)*Integral_{-infinity..+infinity} sqrt(log(1/2 + i*z))* sech(Pi*z)^2). 1
0, 3, 7, 6, 2, 5, 4, 9, 2, 0, 4, 8, 2, 6, 0, 4, 3, 2, 6, 4, 9, 9, 4, 3, 7, 2, 7, 2, 8, 9, 7, 8, 7, 6, 2, 2, 4, 8, 5, 4, 4, 7, 6, 7, 9, 0, 6, 0, 4, 4, 5, 1, 9, 7, 0, 8, 6, 6, 4, 8, 5, 1, 3, 0, 2, 0, 9, 2, 6, 6, 9, 0, 2, 0, 7, 5, 0, 1, 1, 6, 5, 8, 7, 0, 1, 1, 7 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

See the references given in A301815.

LINKS

Table of n, a(n) for n=0..86.

FORMULA

Let beta(r) be the real part of Integral_{-oo..oo} (log(1/2 + i*z)^r / (exp(-Pi*z) + exp(Pi*z))^2) dz, where i denotes the imaginary unit. The constant equals beta(1/2) and A301815 equals -beta(1).

EXAMPLE

Equals

0.03762549204826043264994372728978762248544767906044519708664851302092...

MAPLE

Re((1/2)*int(sqrt(log(1/2 + I*z))*sech(Pi*z)^2, z=0..64)): evalf(%, 100);

CROSSREFS

Cf. A301815.

Sequence in context: A200611 A016666 A318352 * A065281 A256848 A019952

Adjacent sequences:  A301811 A301812 A301813 * A301815 A301816 A301817

KEYWORD

nonn,cons

AUTHOR

Peter Luschny, Apr 13 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 22 11:34 EDT 2019. Contains 326176 sequences. (Running on oeis4.)