OFFSET
1,2
COMMENTS
Conjecture: a(n) > 0 for all n > 1.
We call this the 2-3 conjecture. It is simialr to the author's 2-5 conjecture which states that A300510(n) > 0 for all n > 1.
We have verified that a(n) > 0 for all n = 2..5*10^7.
It is known that the number of ways to write a positive integer n as x^2 + 2*y^2 with x and y integers is twice the difference |{d > 0: d|n and d == 1,3 (mod 8)| - |{d>0: d|n and d == 5,7 (mod 8)}|.
LINKS
Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
Zhi-Wei Sun, Refining Lagrange's four-square theorem, J. Number Theory 175(2017), 167-190.
Zhi-Wei Sun, Restricted sums of four squares, arXiv:1701.05868 [math.NT], 2017-2018.
EXAMPLE
a(2) = 2 since 2^2 = 2*4^0 + 0^2 + 2*1^2 and 2^2 = 3*4^0 + 1^2 + 2*0^2.
a(3) = 2 since 3^2 = 2*4^1 + 1^2 + 2*0^2 and 3^2 = 3*4^0 + 2^2 + 2*1^2.
a(5) = 2 since 5^2 = 2*4^1 + 3^2 + 2*2^2 and 5^2 = 3*4^0 + 2^2 + 2*3^2.
MATHEMATICA
f[n_]:=f[n]=n/2^(IntegerExponent[n, 2]);
OD[n_]:=OD[n]=Divisors[f[n]];
QQ[n_]:=QQ[n]=(n==0)||(n>0&&Sum[JacobiSymbol[-2, Part[OD[n], i]], {i, 1, Length[OD[n]]}]!=0);
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
tab={}; Do[r=0; Do[If[QQ[n^2-m*4^k], Do[If[SQ[n^2-m*4^k-2x^2], r=r+1], {x, 0, Sqrt[(n^2-m*4^k)/2]}]], {m, 2, 3}, {k, 0, Log[4, n^2/m]}]; tab=Append[tab, r], {n, 1, 80}]; Print[tab]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Mar 21 2018
STATUS
approved