login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A301452
Number of ways to write n^2 as m*4^k + x^2 + 2*y^2 with m in the set {2, 3} and k,x,y nonnegative integers.
11
0, 2, 2, 2, 2, 5, 3, 2, 4, 4, 4, 5, 5, 5, 6, 2, 4, 6, 5, 4, 9, 5, 4, 5, 5, 7, 10, 5, 6, 7, 8, 2, 6, 6, 7, 6, 9, 7, 10, 4, 6, 12, 3, 5, 10, 5, 6, 5, 5, 8, 9, 7, 7, 12, 5, 5, 13, 9, 6, 7, 8, 10, 13, 2, 6, 8, 10, 6, 15, 9, 9, 6, 10, 9, 12, 7, 8, 13, 6, 4
OFFSET
1,2
COMMENTS
Conjecture: a(n) > 0 for all n > 1.
We call this the 2-3 conjecture. It is simialr to the author's 2-5 conjecture which states that A300510(n) > 0 for all n > 1.
We have verified that a(n) > 0 for all n = 2..5*10^7.
It is known that the number of ways to write a positive integer n as x^2 + 2*y^2 with x and y integers is twice the difference |{d > 0: d|n and d == 1,3 (mod 8)| - |{d>0: d|n and d == 5,7 (mod 8)}|.
LINKS
Zhi-Wei Sun, Refining Lagrange's four-square theorem, J. Number Theory 175(2017), 167-190.
Zhi-Wei Sun, Restricted sums of four squares, arXiv:1701.05868 [math.NT], 2017-2018.
EXAMPLE
a(2) = 2 since 2^2 = 2*4^0 + 0^2 + 2*1^2 and 2^2 = 3*4^0 + 1^2 + 2*0^2.
a(3) = 2 since 3^2 = 2*4^1 + 1^2 + 2*0^2 and 3^2 = 3*4^0 + 2^2 + 2*1^2.
a(5) = 2 since 5^2 = 2*4^1 + 3^2 + 2*2^2 and 5^2 = 3*4^0 + 2^2 + 2*3^2.
MATHEMATICA
f[n_]:=f[n]=n/2^(IntegerExponent[n, 2]);
OD[n_]:=OD[n]=Divisors[f[n]];
QQ[n_]:=QQ[n]=(n==0)||(n>0&&Sum[JacobiSymbol[-2, Part[OD[n], i]], {i, 1, Length[OD[n]]}]!=0);
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
tab={}; Do[r=0; Do[If[QQ[n^2-m*4^k], Do[If[SQ[n^2-m*4^k-2x^2], r=r+1], {x, 0, Sqrt[(n^2-m*4^k)/2]}]], {m, 2, 3}, {k, 0, Log[4, n^2/m]}]; tab=Append[tab, r], {n, 1, 80}]; Print[tab]
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Mar 21 2018
STATUS
approved