login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A301393
a(n) = Product_{k=1..L} hypergeom([-n, -n], [1], k) with L = 4.
1
1, 120, 56628, 41983200, 38244074820, 39137678949600, 43169977801676880, 50180219346847075200, 60633191914827463116900, 75481112829367580702796000, 96214948596107910313766029008, 125026188575803676432586848856960, 165076420520740156599642652986224784
OFFSET
0,2
FORMULA
Recurrence: (n-3)^2*(n-2)^2*(n-1)^2*n^4*(2*n-13)*(2*n-11)*(2*n-9)*(58844*n^6 - 1412256*n^5 + 13592380*n^4 - 66837440*n^3 + 176157576*n^2 - 234562624*n + 122345655)*a(n)=120*(n-3)^2*(n-2)^2*(n-1)^2*(2*n-13)*(2*n-11)*(2*n-9)*(2*n-1)^2*(235376*n^8 - 5884400*n^7 + 60077388*n^6 - 323129466*n^5 + 985542429*n^4 - 1709581035*n^3 + 1603577752*n^2 - 723821269*n + 122325360)*a(n-1) - 16*(n-3)^2*(n-2)^2*(2*n-13)*(2*n-11)*(2*n-3)^2*(2*n-1)*(546307696*n^10 - 16935538576*n^9 + 225057696392*n^8 - 1678347886040*n^7 + 7722946671584*n^6 - 22718876464232*n^5 + 42836897175604*n^4 - 50512102808434*n^3 + 35149893258801*n^2 - 12841591780296*n + 1871682205320)*a(n-2) + 1920*(n-3)^2*(2*n-13)*(2*n-11)*(2*n-5)^2*(2*n-3)*(2*n-1)^2*(123101648*n^10 - 4062354384*n^9 + 58223209796*n^8 - 475879945898*n^7 + 2447982317405*n^6 - 8247410195747*n^5 + 18335033385744*n^4 - 26375282324477*n^3 + 23256044918502*n^2 - 11156176523664*n + 2136088451160)*a(n-3) - 256*(2*n-13)*(2*n-7)^2*(2*n-5)*(2*n-3)*(2*n-1)^2*(37315922600*n^12 - 1567268749200*n^11 + 29452637855264*n^10 - 326877445085240*n^9 + 2381202054498224*n^8 - 11964823606010912*n^7 + 42393024452273562*n^6 - 106320184974511802*n^5 + 186423157681832475*n^4 - 221423574944289564*n^3 + 167504632422689313*n^2 - 71361665488438164*n + 12581492486282280)*a(n-4) + 276480*(2*n-13)*(2*n-9)^2*(2*n-7)*(2*n-5)*(2*n-3)^2*(2*n-1)^2*(123101648*n^10 - 4554760976*n^9 + 73734017444*n^8 - 685490500982*n^7 + 4036636234787*n^6 - 15651262473677*n^5 + 40189058083536*n^4 - 66839237050563*n^3 + 67905381181320*n^2 - 37111550536602*n + 7867011090105)*a(n-5) - 331776*(2*n-11)^2*(2*n-9)*(2*n-7)*(2*n-5)*(2*n-3)^2*(2*n-1)^2*(546307696*n^10 - 21306000144*n^9 + 362727235784*n^8 - 3536617831208*n^7 + 21770125653896*n^6 - 87904346623040*n^5 + 234073849141972*n^4 - 401839017403046*n^3 + 419321125129479*n^2 - 234120782139840*n + 50374929826575)*a(n-6) + 358318080*(2*n-13)^2*(2*n-11)*(2*n-9)*(2*n-7)*(2*n-5)^2*(2*n-3)^2*(2*n-1)^2*(235376*n^8 - 7296656*n^7 + 94677660*n^6 - 666175438*n^5 + 2750313619*n^4 - 6721504509*n^3 + 9292612455*n^2 - 6418417212*n + 1579020075)*a(n-7) - 429981696*(n-7)^2*(2*n-15)*(2*n-13)*(2*n-11)*(2*n-9)*(2*n-7)*(2*n-5)^2*(2*n-3)^2*(2*n-1)^2*(58844*n^6 - 1059192*n^5 + 7413760*n^4 - 25413600*n^3 + 43959636*n^2 - 35098488*n + 9342135)*a(n-8). - Vaclav Kotesovec, Feb 17 2024
MAPLE
a := n -> mul(hypergeom([-n, -n], [1], k), k=1..4):
seq(simplify(a(k)), k=0..11);
MATHEMATICA
a[n_] := Product[Hypergeometric2F1[-n, -n, 1, k], {k, 1, 4}];
Table[a[n], {n, 0, 12}] (* Jean-François Alcover, Mar 20 2018 *)
CROSSREFS
With the parameter L in the name: A000012 (L=0), A000984 (L=1), A268555 (L=2), A301392 (L=3), this seq. (L=4).
Sequence in context: A006176 A275455 A109897 * A074653 A065961 A364512
KEYWORD
nonn
AUTHOR
Peter Luschny, Mar 20 2018
STATUS
approved