login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A300777
Primes of the form a^2 + b^2 such that both a^2 + 3b^2 and 3a^2 + b^2 are prime.
0
5, 29, 53, 113, 449, 653, 701, 809, 953, 1373, 1481, 1709, 1733, 2069, 2549, 2657, 2753, 2909, 3413, 3929, 4397, 5153, 5273, 5693, 6101, 6269, 6449, 6869, 7121, 7529, 7541, 7949, 8297, 8369, 8597, 8849, 9221, 9377, 9629, 10061, 10301, 10313, 10529, 10889, 10973, 11657, 12161, 12401, 12497, 12569
OFFSET
1,1
COMMENTS
Primes of the form (x^2+y^2)/2 such that both x^2+xy+y^2 and x^2-xy+y^2 are prime.
Note that a^2+b^2 = ((a+b)^2+(a-b)^2)/2.
FORMULA
a(n) == 1 (mod 4).
EXAMPLE
The prime 29 = 5^2 + 2^2 is a term, because 5^2 + 3*2^2 = 37 is prime and 3*5^2 + 2^2 = 79 is prime.
Equivalently: 29 = ((5+2)^2 + (5-2)^2)/2 = (7^2 + 3^2)/2 is a term, because 7^2 + 7*3 + 3^2 = 79 is prime and 7^2 - 7*3 + 3^2 = 37 is prime.
MAPLE
N:= 10^5: Res:= NULL:
for a from 1 to isqrt(N) by 2 do
for b from 2 to floor(sqrt(N-a^2)) by 2 do
if isprime(a^2+b^2) and isprime(a^2+3*b^2) and isprime(3*a^2+b^2)
then Res:= Res, a^2+b^2
fi
od od:
sort([Res]); # Robert Israel, Mar 12 2018
MATHEMATICA
lst = {}; nmx = 120; Do[ If[ PrimeQ[a^2 + b^2] && PrimeQ[3a^2 + b^2] && PrimeQ[a^2 + 3b^2], AppendTo[lst, a^2 + b^2]], {a, nmx}, {b, a, nmx}]; Take[ Sort@ Flatten@ lst, 50] (* Robert G. Wilson v, Mar 12 2018 *)
PROG
(PARI) lista(nn) = {vres = []; forstep(a=1, sqrtint(nn), 2, forstep(b=2, sqrtint(nn-a^2), 2, if (isprime(a^2+b^2) && isprime(a^2+3*b^2) && isprime(3*a^2+b^2), vres = concat(vres, a^2+b^2)); ); ); vecsort(vres); } \\ Michel Marcus, Apr 25 2018, after Maple
CROSSREFS
Subsequence of A002313.
Sequence in context: A107003 A141374 A147153 * A177831 A115706 A031394
KEYWORD
nonn
AUTHOR
Thomas Ordowski, Mar 12 2018
EXTENSIONS
More terms from Robert Israel and Robert G. Wilson v, Mar 12 2018
STATUS
approved