|
|
A300762
|
|
Numbers k > 1 such that 2^k == 2 (mod k) and gcd(k, 3^k - 3) = 1.
|
|
1
|
|
|
35333, 42799, 49981, 60787, 150851, 162193, 164737, 241001, 253241, 256999, 280601, 452051, 481573, 556169, 617093, 665333, 722201, 838861, 1016801, 1252697, 1507963, 1534541, 1678541, 1826203, 2134277, 2269093, 2304167, 2313697, 2537641, 2617451, 2811271
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Numbers k > 1 such that 2^(k-1) == 1 (mod k) and gcd(k, 3^(k-1)-1) = 1.
Are there infinitely many such "anti-Carmichael pseudoprimes (2,3)"?
|
|
LINKS
|
Table of n, a(n) for n=1..31.
|
|
MATHEMATICA
|
Select[Range[2 10^6], PowerMod[2, #, #] == 2 && GCD[#, # + PowerMod[3, #, #] - 3] == 1 &] (* Giovanni Resta, Aug 18 2018 *)
|
|
PROG
|
(PARI) isok(k) = (k != 1) && (Mod(2, k)^k == Mod(2, k)) && (gcd(k, 3^k - 3) == 1); \\ Michel Marcus, Aug 15 2018
|
|
CROSSREFS
|
Subsequence of A001567 and of A316907 and probably of A121707.
Sequence in context: A254023 A254890 A187855 * A250978 A282129 A203337
Adjacent sequences: A300759 A300760 A300761 * A300763 A300764 A300765
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Thomas Ordowski, Aug 15 2018
|
|
EXTENSIONS
|
More terms from Michel Marcus, Aug 15 2018
More terms from Giovanni Resta, Aug 18 2018
|
|
STATUS
|
approved
|
|
|
|