The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A300760 Number of ways to select 4 numbers from the set of the first n natural numbers avoiding 3-term arithmetic progressions. 3
 0, 1, 4, 10, 25, 51, 98, 165, 267, 407, 601, 849, 1175, 1580, 2089, 2703, 3452, 4338, 5395, 6622, 8058, 9706, 11606, 13758, 16210, 18963, 22066, 25520, 29379, 33645, 38376, 43571, 49293, 55545, 62391, 69831, 77937, 86710, 96223, 106477, 117550, 129444, 142241 (list; graph; refs; listen; history; text; internal format)
 OFFSET 4,3 LINKS Heinrich Ludwig, Table of n, a(n) for n = 4..1000 Index entries for linear recurrences with constant coefficients, signature (2,0,-1,0,-2,2,0,1,0,-2,1). FORMULA a(n) = (n^4 - 12*n^3 + 51*n^2 - 78*n + 32)/24 + b(n) + c(n), where   b(n) = 0          for n even   b(n) = (-n + 2)/4 for n odd   c(n) = 0          for n == 1,2,5,7,10,11 (mod 12)   c(n) = -1/3       for n == 3,6,9         (mod 12)   c(n) = -4/3       for n == 0             (mod 12)   c(n) = -1         for n == 4,8           (mod 12). a(n) = (n^4 - 12*n^3 + 51*n^2 - 78*n + 32)/24 + (n == 1 (mod 2))*(-n + 2)/4 - (n == 0 (mod 3))/3 - (n == 0 (mod 4)). From Colin Barker, Mar 12 2018: (Start) G.f.: x^5*(1 + 2*x + 2*x^2 + 6*x^3 + 5*x^4 + 8*x^5) / ((1 - x)^5*(1 + x)^2*(1 + x^2)*(1 + x + x^2)). a(n) = 2*a(n-1) - a(n-3) - 2*a(n-5) + 2*a(n-6) + a(n-8) - 2*a(n-10) + a(n-11) for n>14. (End) EXAMPLE There are 4 selections of 4 natural numbers from the set {1,2,3,4,5,6} free of 3-term arithmetic progressions: {1,2,4,5}, {1,2,5,6}, {1,3,4,6}, {2,3,5,6}. MATHEMATICA Array[(#^4 - 12 #^3 + 51 #^2 - 78 # + 32)/24 + Boole[OddQ@ #] (-# + 2)/4 - Boole[Mod[#, 3] == 0]/3 - Boole[Mod[#, 4] == 0] &, 43, 4] (* Michael De Vlieger, Mar 14 2018 *) PROG (PARI) concat(0, Vec(x^5*(1 + 2*x + 2*x^2 + 6*x^3 + 5*x^4 + 8*x^5) / ((1 - x)^5*(1 + x)^2*(1 + x^2)*(1 + x + x^2)) + O(x^60))) \\ Colin Barker, Aug 06 2018 CROSSREFS Cf. A212964, A300761. Column k=4 of A334187. Sequence in context: A111207 A298018 A254233 * A229916 A113412 A227712 Adjacent sequences:  A300757 A300758 A300759 * A300761 A300762 A300763 KEYWORD nonn,easy AUTHOR Heinrich Ludwig, Mar 12 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 9 22:42 EDT 2020. Contains 336335 sequences. (Running on oeis4.)