OFFSET
0,3
COMMENTS
Also number of overpartitions of n without a 1. - George Beck, Jan 25 2021
LINKS
FORMULA
G.f.: Product_{k>=2} (1 + x^k)/(1 - x^k).
G.f.: (1 - x)/((1 + x)*theta_4(x)), where theta_4() is the Jacobi theta function.
a(n) ~ Pi * exp(Pi*sqrt(n)) / (32*n^(3/2)). - Vaclav Kotesovec, Mar 05 2018
MAPLE
g:= (1-x)/((1+x)*JacobiTheta4(0, x)):
S:=series(g, x, 101):
seq(coeff(S, x, j), j=0..100); # Robert Israel, Mar 05 2018
MATHEMATICA
nmax = 47; CoefficientList[Series[Product[(1 + x^k)/(1 - x^k), {k, 2, nmax}], {x, 0, nmax}], x]
nmax = 47; CoefficientList[Series[(1 - x)/((1 + x) EllipticTheta[4, 0, x]), {x, 0, nmax}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Mar 05 2018
STATUS
approved