login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A300415
Expansion of Product_{k>=2} (1 + x^k)/(1 - x^k).
6
1, 0, 2, 2, 4, 6, 10, 14, 22, 32, 46, 66, 94, 130, 182, 250, 340, 462, 622, 830, 1106, 1462, 1922, 2518, 3282, 4256, 5502, 7082, 9078, 11602, 14774, 18746, 23722, 29922, 37630, 47202, 59044, 73662, 91682, 113830, 140994, 174262, 214906, 264462, 324802, 398110, 487018, 594694
OFFSET
0,3
COMMENTS
Convolution of the sequences A002865 and A025147.
Also number of overpartitions of n without a 1. - George Beck, Jan 25 2021
FORMULA
G.f.: Product_{k>=2} (1 + x^k)/(1 - x^k).
G.f.: (1 - x)/((1 + x)*theta_4(x)), where theta_4() is the Jacobi theta function.
a(n) ~ Pi * exp(Pi*sqrt(n)) / (32*n^(3/2)). - Vaclav Kotesovec, Mar 05 2018
MAPLE
g:= (1-x)/((1+x)*JacobiTheta4(0, x)):
S:=series(g, x, 101):
seq(coeff(S, x, j), j=0..100); # Robert Israel, Mar 05 2018
MATHEMATICA
nmax = 47; CoefficientList[Series[Product[(1 + x^k)/(1 - x^k), {k, 2, nmax}], {x, 0, nmax}], x]
nmax = 47; CoefficientList[Series[(1 - x)/((1 + x) EllipticTheta[4, 0, x]), {x, 0, nmax}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Mar 05 2018
STATUS
approved