login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of Product_{k>=2} (1 + x^k)/(1 - x^k).
6

%I #21 Jan 25 2021 08:01:22

%S 1,0,2,2,4,6,10,14,22,32,46,66,94,130,182,250,340,462,622,830,1106,

%T 1462,1922,2518,3282,4256,5502,7082,9078,11602,14774,18746,23722,

%U 29922,37630,47202,59044,73662,91682,113830,140994,174262,214906,264462,324802,398110,487018,594694

%N Expansion of Product_{k>=2} (1 + x^k)/(1 - x^k).

%C Convolution of the sequences A002865 and A025147.

%C Also number of overpartitions of n without a 1. - _George Beck_, Jan 25 2021

%H Seiichi Manyama, <a href="/A300415/b300415.txt">Table of n, a(n) for n = 0..10000</a>

%H <a href="/index/Par#part">Index entries for related partition-counting sequences</a>

%F G.f.: Product_{k>=2} (1 + x^k)/(1 - x^k).

%F G.f.: (1 - x)/((1 + x)*theta_4(x)), where theta_4() is the Jacobi theta function.

%F a(n) ~ Pi * exp(Pi*sqrt(n)) / (32*n^(3/2)). - _Vaclav Kotesovec_, Mar 05 2018

%p g:= (1-x)/((1+x)*JacobiTheta4(0,x)):

%p S:=series(g,x,101):

%p seq(coeff(S,x,j),j=0..100); # _Robert Israel_, Mar 05 2018

%t nmax = 47; CoefficientList[Series[Product[(1 + x^k)/(1 - x^k), {k, 2, nmax}], {x, 0, nmax}], x]

%t nmax = 47; CoefficientList[Series[(1 - x)/((1 + x) EllipticTheta[4, 0, x]), {x, 0, nmax}], x]

%Y Cf. A002865, A015128, A025147, A207641, A211971.

%K nonn

%O 0,3

%A _Ilya Gutkovskiy_, Mar 05 2018