OFFSET
0,22
LINKS
Eric Weisstein's World of Mathematics, q-Polygamma Function, q-Pochhammer Symbol.
FORMULA
G.f.: Sum_{k>=0} (2^n - 2*n) * x^(n*(2*n+1)) / (x; x)_{2*n}, where (a; q)_n = Product_{k=0..n-1} (1 - a*q^n) is the q-Pochhammer symbol.
G.f.: ((sqrt(2)-1)*(-sqrt(2); x)_inf - (sqrt(2)+1)*(sqrt(2); x)_inf)/2 + (2*(x; x)_inf * (log(1-x) + psi_x(1)) + (-1; x)_inf * (log(1-x) + psi_x(1 - log(-1)/log(x))))/(4*log(x)), where psi_q(z) is the q-digamma function, and (a; q)_inf = Product_{k>=0} (1 - a*q^n) is the q-Pochhammer symbol (the Euler function), log(-1) = i*Pi.
MATHEMATICA
Table[SeriesCoefficient[FunctionExpand[Sum[(2^n - 2 n) x^(n (2 n + 1))/QPochhammer[x, x, 2 n], {n, 0, Sqrt[k/2]}]], {x, 0, k}], {k, 0, 60}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladimir Reshetnikov, Nov 17 2016
STATUS
approved