OFFSET
0,1
COMMENTS
Hirschhorn has discovered that p(20*n+11,4) + p(20*n+12,4) + p(20*n+13,4) = 25*(n + 1)*(4*n + 3)*(5*n + 4)/3, where p(m,k) denote the number of partitions of m into at most k parts. Therefore, p(20*n+11,4) + p(20*n+12,4) + p(20*n+13,4) == 0 (mod 50) [see Hirschhorn's paper in References section].
a(n) == 0 (mod 3) if n is of the form 2*h + 3*floor(h/3 + 2/3) + 1.
a(n) == 0 (mod 7) if n is a member of A047278.
REFERENCES
Michael D. Hirschhorn, Congruences modulo 5 for partitions into at most four parts, The Fibonacci Quarterly, Vol. 56, Number 1, 2018, pages 32-37 [the equation 1.7 contains a typo].
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
FORMULA
MATHEMATICA
Table[25 (n + 1) (4 n + 3) (5 n + 4)/3, {n, 0, 40}]
PROG
(PARI) vector(40, n, n--; 25*(n+1)*(4*n+3)*(5*n+4)/3)
(Sage) [25*(n+1)*(4*n+3)*(5*n+4)/3 for n in (0..40)]
(Maxima) makelist(25*(n+1)*(4*n+3)*(5*n+4)/3, n, 0, 40);
(GAP) List([0..40], n -> 25*(n+1)*(4*n+3)*(5*n+4)/3);
(Magma) [25*(n+1)*(4*n+3)*(5*n+4)/3: n in [0..40]];
(Python) [25*(n+1)*(4*n+3)*(5*n+4)/3 for n in range(40)]
(Julia) [div(25*(n+1)*(4*n+3)*(5*n+4), 3) for n in 0:40] |> println
(PARI) Vec(50*(2 + 13*x + 5*x^2) / (1 - x)^4 + O(x^60)) \\ Colin Barker, Mar 13 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, Mar 12 2018
STATUS
approved