login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A300152
G.f. A(x) satisfies: 1 = Sum_{n>=0} ( (1+x)^(n^2) - A(x)^n )^n.
0
1, 1, 4, 204, 21365, 3655450, 914720443, 314376587287, 142230235674161, 82054323238595173, 58859164893105387442, 51422171965089961951920, 53779967726784762649882252, 66358210285736859276931328215, 95403541500521180624070289201028, 158111431872131942988858401878995245, 299245447906369767603866411915527014775
OFFSET
0,3
EXAMPLE
G.f.: A(x) = 1 + x + 4*x^2 + 204*x^3 + 21365*x^4 + 3655450*x^5 + 914720443*x^6 + 314376587287*x^7 + 142230235674161*x^8 + 82054323238595173*x^9 + ...
such that
1 = 1 + ((1+x) - A(x)) + ((1+x)^4 - A(x)^2)^2 + ((1+x)^9 - A(x)^3)^3 + ((1+x)^16 - A(x)^4)^4 + ((1+x)^25 - A(x)^5)^5 + ((1+x)^36 - A(x)^6)^6 + ...
PROG
(PARI) {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0); A[#A] = Vec( sum(m=0, #A, ((1+x +x*O(x^#A))^(m^2) - Ser(A)^m)^m ) )[#A] ); A[n+1]}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Cf. A304639.
Sequence in context: A317273 A049656 A129465 * A260639 A222282 A087924
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 30 2018
STATUS
approved