login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A317273
Number of permutations of [n*(n+1)/2] whose lengths of increasing runs are the positive integers from 1 to n.
3
1, 1, 4, 202, 163692, 2487100956, 832252747110528, 7116720347983770858600, 1776529280247277318394451118272, 14580103976468323893693256154922439405632, 4377460729080839690885111988468699720430287682744896, 52959485251272238069446517666752040946228209263610778166878160384
OFFSET
0,3
LINKS
FORMULA
a(n) = A317327(A000217(n),n).
a(n) <= A317165(n).
MAPLE
g:= (n, s)-> `if`(n in s, 1, 0):
b:= proc(u, o, t, s) option remember; `if`(u+o=0, g(t, s),
`if`(g(t, s)=1, add(b(u-j, o+j-1, 1, s minus {t})
, j=1..u), 0)+ add(b(u+j-1, o-j, t+1, s), j=1..o))
end:
a:= n-> b(n*(n+1)/2, 0$2, {$0..n}):
seq(a(n), n=0..10);
MATHEMATICA
g[n_, s_] := If[MemberQ[s, n], 1, 0];
b[u_, o_, t_, s_] := b[u, o, t, s] = If[u + o == 0, g[t, s],
If[g[t, s] == 1, Sum[b[u - j, o + j - 1, 1, s ~Complement~ {t}],
{j, u}], 0] + Sum[b[u + j - 1, o - j, t + 1, s], {j, o}]];
a[n_] := b[n(n+1)/2, 0, 0, Range[0, n]];
Table[a[n], {n, 0, 10}] (* Jean-François Alcover, Sep 01 2021, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jul 25 2018
STATUS
approved