login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A300153 Square array T(n, k) read by antidiagonals upwards, n > 0 and k > 0: T(n, k) is the number of parts inscribed in a rose or rhodonea curve with polar coordinates r = cos(t * (k/n)). 1
1, 4, 4, 2, 1, 3, 8, 12, 12, 8, 3, 4, 1, 4, 5, 12, 20, 24, 24, 20, 12, 4, 2, 9, 1, 10, 3, 7, 16, 28, 4, 40, 40, 4, 28, 16, 5, 8, 12, 12, 1, 12, 14, 8, 9, 20, 36, 48, 56, 60, 60, 56, 48, 36, 20, 6, 3, 2, 4, 20, 1, 21, 4, 3, 5, 11, 24, 44, 60, 72, 80, 84, 84, 80 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

For any real p > 0, the rose or rhodonea curve with polar coordinates r = cos(t * p):

- is dense in the unit disk when p is irrational,

- is closed when p is rational, say p = u/v in reduced form; in that case, the number of parts inscribed in the curve is T(v, u),

- see also the illustration in Links section.

LINKS

Table of n, a(n) for n=1..74.

Rémy Sigrist, Illustration of the first terms

Eric Weisstein's World of Mathematics, Rose

Wikipedia, Rose (mathematics)

FORMULA

T(1, k) = A022998(k).

T(n, k) = T(n/gcd(n, k), k/gcd(n, k)).

Empirically, when gcd(n, k) = 1, we have the following formulas depending on the parity of n and of k:

             | k is odd                       | k is even

   ----------+--------------------------------+--------------------

   n is odd  | T(n, k) =     k * A029578(n+1) | T(n, k) = 2 * k * n

   n is even | T(n, k) = 2 * k * A029578(n+1) | N/A

EXAMPLE

Array T(n, k) begins:

  n\k|    1    2    3    4    5    6    7    8    9

  ---+---------------------------------------------

    1|    1    4    3    8    5   12    7   16    9

    2|    4    1   12    4   20    3   28    8   36

    3|    2   12    1   24   10    4   14   48    3

    4|    8    4   24    1   40   12   56    4   72

    5|    3   20    9   40    1   60   21   80   27

    6|   12    2    4   12   60    1   84   24   12

    7|    4   28   12   56   20   84    1  112   36

    8|   16    8   48    4   80   24  112    1  144

    9|    5   36    2   72   25   12   35  144    1

   10|   20    3   60   20    4    9  140   40  180

   11|    6   44   18   88   30  132   42  176   54

...

The following diagram shows the curve for T(2, 1) and the corresponding 4 parts:

                         |

               ########     ########

           #####      #######      #####

        ###          ###   ###          ###

      ###           ##   |   ##           ###

     ##            ##         ##            ##

    ##             #  Part #2  #             ##

   ##              ##         ##              ##

   #                ###  |  ###                #

  -#- - - Part #3  - -#######- -  Part #1 - - -#-

   #                ###  |  ###                #

   ##              ##         ##              ##

    ##             #  Part #4  #             ##

     ##            ##         ##            ##

      ###           ##   |   ##           ###

        ###          ###   ###          ###

           #####      #######      #####

               ########     ########

                         |

CROSSREFS

Cf. A022998, A029578.

Sequence in context: A196766 A153163 A168455 * A182781 A291085 A193556

Adjacent sequences:  A300150 A300151 A300152 * A300154 A300155 A300156

KEYWORD

nonn,tabl

AUTHOR

Rémy Sigrist, Feb 26 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 19 16:17 EDT 2019. Contains 328223 sequences. (Running on oeis4.)