login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A300153
Square array T(n, k) read by antidiagonals upwards, n > 0 and k > 0: T(n, k) is the number of parts inscribed in a rose or rhodonea curve with polar coordinates r = cos(t * (k/n)).
2
1, 4, 4, 2, 1, 3, 8, 12, 12, 8, 3, 4, 1, 4, 5, 12, 20, 24, 24, 20, 12, 4, 2, 9, 1, 10, 3, 7, 16, 28, 4, 40, 40, 4, 28, 16, 5, 8, 12, 12, 1, 12, 14, 8, 9, 20, 36, 48, 56, 60, 60, 56, 48, 36, 20, 6, 3, 2, 4, 20, 1, 21, 4, 3, 5, 11, 24, 44, 60, 72, 80, 84, 84, 80
OFFSET
1,2
COMMENTS
For any real p > 0, the rose or rhodonea curve with polar coordinates r = cos(t * p):
- is dense in the unit disk when p is irrational,
- is closed when p is rational, say p = u/v in reduced form; in that case, the number of parts inscribed in the curve is T(v, u),
- see also the illustration in Links section.
LINKS
Eric Weisstein's World of Mathematics, Rose
FORMULA
T(1, k) = A022998(k).
T(n, k) = T(n/gcd(n, k), k/gcd(n, k)).
Empirically, when gcd(n, k) = 1, we have the following formulas depending on the parity of n and of k:
| k is odd | k is even
----------+--------------------------------+--------------------
n is odd | T(n, k) = k * A029578(n+1) | T(n, k) = 2 * k * n
n is even | T(n, k) = 2 * k * A029578(n+1) | N/A
EXAMPLE
Array T(n, k) begins:
n\k| 1 2 3 4 5 6 7 8 9
---+---------------------------------------------
1| 1 4 3 8 5 12 7 16 9
2| 4 1 12 4 20 3 28 8 36
3| 2 12 1 24 10 4 14 48 3
4| 8 4 24 1 40 12 56 4 72
5| 3 20 9 40 1 60 21 80 27
6| 12 2 4 12 60 1 84 24 12
7| 4 28 12 56 20 84 1 112 36
8| 16 8 48 4 80 24 112 1 144
9| 5 36 2 72 25 12 35 144 1
10| 20 3 60 20 4 9 140 40 180
11| 6 44 18 88 30 132 42 176 54
...
The following diagram shows the curve for T(2, 1) and the corresponding 4 parts:
|
######## ########
##### ####### #####
### ### ### ###
### ## | ## ###
## ## ## ##
## # Part #2 # ##
## ## ## ##
# ### | ### #
-#- - - Part #3 - -#######- - Part #1 - - -#-
# ### | ### #
## ## ## ##
## # Part #4 # ##
## ## ## ##
### ## | ## ###
### ### ### ###
##### ####### #####
######## ########
|
CROSSREFS
Sequence in context: A196766 A153163 A168455 * A182781 A291085 A193556
KEYWORD
nonn,tabl
AUTHOR
Rémy Sigrist, Feb 26 2018
STATUS
approved